	DOCKET NO. CP17000	DOC NO: USAKE-PT-SRREG-00-
	RESOURCE REPORT NO. 2	000002-000
Alaska LNG	APPENDIX S	April 14, 2017
Project	PART 2 OF 6	REVISION: 0
	PUBLIC	

Part 2 of 6: Appendix S of Resource Report No. 2

ATTACHMENT B: LIQUEFACTION FACILITIES AQUIFER PUMP TEST WELL AND GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

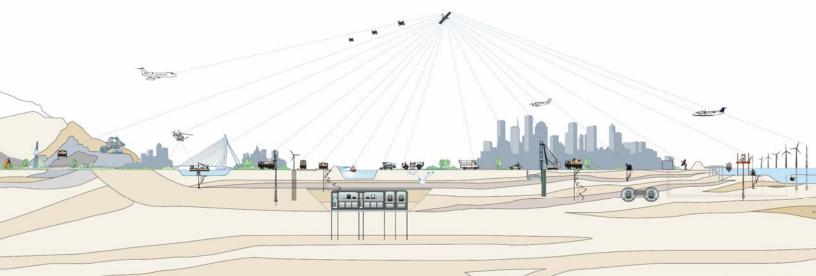
Confidential

Alaska LNG Tugro

LNG FACILITIES AQUIFER PUMP TEST WELL AND GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

USAL-FG-GRZZZ-00-002016-002

Rev		Date	Revision	Description	Origina	itor	Reviewer Endorser			A	pprover
А	21-	Oct-16	Issued for I	Review	J. Whea K. Eme	,	P. Wong	2			Sadoff / lexander
0	2-0)ec-16	Issued for I	Jse	K. Eme	ery					Sadoff / lexander
Docur	ment	Country	Facility	Originator	Discipline	Туре	Sub-Type	Location	Sec	luence	Identifier
Contro	ol No.	US	AL	FG	G	R	ZZZ	00	00	2016	002



FUGRO CONSULTANTS, INC.

Alaska LNG.

LNG FACILITIES AQUIFER PUMP TEST WELL AND GROUNDWATER OBSERVATION WELL INSTALLATION REPORT ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

AKLNG REPORT NO. USAL-FG-GRZZZ-00-002016-002 REPORT NO. 04.10160001-4 EXXONMOBIL ALASKA LNG LLC (EMALL) HOUSTON, TEXAS

	Rev	Date	Revision Description	Originator	Reviewer	Approver
	А	21-Oct-16	Issued for Review	J. Whearty / K. Emery	D. Sadoff	J. Alexander
	0	2-Dec-16	Issued for Use	K. Emery		D. Sadoff / J. Alexander

FUGRO CONSULTANTS, INC.

REVISION MODIFICATION LOG

Revision	Section	Description

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16 FUGRO CONSULTANTS, INC.

1777 Botelho Drive, Suite 262 Walnut Creek, California 94596 Tel: (925) 949-7100 Fax: (925) 949-7070

December 2, 2016 Report No. 04.10160001-4

ExxonMobil Alaska LNG LLC (EMALL)

10613 W. Sam Houston Pkwy N, Suite 500 Houston, Texas 77064

Attention: Patrick Wong Geotechnical Engineering Advisor Alaska LNG/Technical POC

Subject: LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report, Onshore LNG Facilities, Alaska LNG Project, Nikiski, Alaska

Fugro Consultants, Inc. (Fugro) is pleased to present this well installation completion report for the onshore facilities of the Alaska LNG Project (AKLNG) located in Nikiski, Alaska. Our services were authorized under Service Work Order No. AKLNG-FUG-US-005 Rev 0, dated March 2, 2016 in accordance with the Service Agreement No. A2275592 between Fugro and ExxonMobil Global Services Company, dated October 29, 2012. Fugro has been contracted by ExxonMobil Alaska LNG LLC (EMALL) under the service order to provide site investigation services for the proposed AKLNG Project. Fugro has been providing services to EMALL since 2014.

We appreciate the opportunity to be of service to EMALL. Please call Mr. Abhishek Shethji, P.E., Fugro's Project Manager at (713) 369-5431, if you have any questions or comments concerning this report, or when we may be of further assistance.

Sincerely,

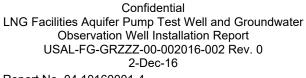
FUGRO CONSULTANTS, INC. TBPE Firm Registration No. 299

Dave Sadoff, P.G. (CA), C.P.G Associate Geologist/Hydrogeologist

Jeriann Alexander, P.E, R.E.P.A Principal Engineer/Hydrologist

Copies Submitted: Aconex Document Control System

TABLE OF CONTENTS


Р	а	a	e
	~	м	-

INTRODUCTION	1
1.1 Project Description	1
1.2 General Scope of Work	
1.3 Limitations	4
1.4 Unit Conversions and Elevation Datums	5
WELL INSTALLATION AND DATA COLLECTION	5
2.1 Observation Well Installation	6
2.2 Aquifer Pump Test Well Installation	8
2.3 Groundwater Monitoring Well Installation	
2.4 Well Development	12
2.4.1 Observation Well and Aquifer Pump Test Well Development	13
2.4.2 Monitoring Well Development	15
2.5 Hydraulic Testing	16
2.6 Pressure Transducers	
CONCLUSIONS	20
REFERENCES	21
	 1.1 Project Description 1.2 General Scope of Work 1.3 Limitations 1.4 Unit Conversions and Elevation Datums WELL INSTALLATION AND DATA COLLECTION 2.1 Observation Well Installation 2.2 Aquifer Pump Test Well Installation 2.3 Groundwater Monitoring Well Installation 2.4 Well Development 2.4.1 Observation Well and Aquifer Pump Test Well Development 2.4.2 Monitoring Well Development 2.5 Hydraulic Testing 2.6 Pressure Transducers CONCLUSIONS

TABLES

Page

Table 1.1.1: Summary of Fugro Reports Developed for 2014, 2015 and 2016 G&G Programs	2
Table 1.4.1: Conversion Units	5
Table 2.1.1: Observation Well Construction Details	7
Table 2.1.2: Observation Well Groundwater Details	7
Table 2.1.3: As-Built Coordinates and Elevations for Observation Wells	7
Table 2.2.1: Aquifer Pump Test Well Construction Details	8
Table 2.2.2: Aquifer Pump Test Well Groundwater Details	9
Table 2.2.3: As-Built Coordinates and Elevations for Aquifer Pump Test Wells	
Table 2.3.1: Monitoring Well Construction Details	
Table 2.3.2: As-Built Coordinates and Elevations for Monitoring Wells	
Table 2.4.1.1: Observation Well and Aquifer Pump Test Well Development Records	
Table 2.4.1.1.1: Aquifer Pump Test Well Development Water Analytical Testing Parameters	
Table 2.4.2.1: Monitoring Well Development Records	
Table 2.5.1: Hydraulic Test Results	
Table 2.6.1: Diver-NETZ System Components for Well Locations	

ILLUSTRATIONS

Plate

APPENDICES

- APPENDIX A METHOD STATEMENTS
- APPENDIX B TABLE B-1, SUMMARY OF ANALYTICAL RESULTS AND ANALYTICAL LABORATORY REPORTS, AQUIFER PUMP TEST WELL DEVELOPMENT WATER
- APPENDIX C INVESTIGATION-DERIVED WASTE DISPOSAL MANIFESTS
- APPENDIX D MANUFACTURER'S SPECIFICATION (CUT) SHEETS

1.0 INTRODUCTION

1.1 **PROJECT DESCRIPTION**

The Alaska Gasline Development Corporation, BP Alaska LNG LLC, ConocoPhillips Alaska LNG Company, and ExxonMobil Alaska LNG LLC (Applicants) plan to construct one integrated liquefied natural gas (LNG) Project (Project) with interdependent facilities for the purpose of liquefying supplies of natural gas from Alaska, in particular from the Point Thomson Unit (PTU) and Prudhoe Bay Unit (PBU) production fields on the Alaska North Slope (North Slope), for export in foreign commerce and opportunities for in-state deliveries of natural gas.

The Natural Gas Act (NGA), 15 U.S.C. § 717a(11) (2006), and Federal Energy Regulatory Commission (FERC) regulations, 18 C.F.R. § 153.2(d) (2014), define "LNG terminal" to include "all natural gas facilities located onshore or in State waters that are used to receive, unload, load, store, transport, gasify, liquefy, or process natural gas that is ... exported to a foreign country from the United States." With respect to this Project, the "LNG Terminal" includes the following: a liquefaction facility (Liquefaction Facility) in Southcentral Alaska; an approximately 804-mile gas pipeline (Mainline); a gas treatment plant (GTP) on the North Slope; an approximately 62-mile gas transmission line connecting the GTP to the PTU gas production facility (PTU Gas Transmission Line or PTTL); and an approximately 1-mile gas transmission line connecting the GTP to the PBU gas production facility (PBU Gas Transmission Line or PBTL). All of these facilities are essential to export natural gas in foreign commerce.

The new Liquefaction Facility would be constructed on the eastern shore of Cook Inlet just south of the existing Agrium fertilizer plant on the Kenai Peninsula, approximately 3 miles southwest of Nikiski and 8.5 miles north of Kenai (Plate 1). The Liquefaction Facility would include the structures, equipment, underlying access rights, and all other associated systems for final processing and liquefaction of natural gas, as well as storage and loading of LNG, including terminal facilities and auxiliary marine vessels used to support Marine Terminal operations (excluding LNG carriers [LNGCs]). The Liquefaction Facility would include three liquefaction trains combining to process up to approximately 20 million metric tons per annum (MMTPA) of LNG. Two 240,000-cubic-meter tanks would be constructed to store the LNG. The Liquefaction Facility would be capable of accommodating two LNG carriers. The size of LNGCs that the Liquefaction Facility would accommodate would range between 125,000–216,000-cubic-meter vessels.

EMALL contracted Fugro to investigate the site conditions of the onshore LNG facilities, marine LNG Terminal, and marine pipeline corridors. This report documents the installation of Observation Wells (OW) and Aquifer Pump Test (APT) wells during the 2016 geophysical and geotechnical site investigation (G&G) program at the Alaska LNG site (Site) near Nikiski, Alaska (Plate 1).

A list of the reports (including the superseded reports) that are generated by Fugro as part of 2014, 2015 and 2016 G&G programs are presented in Table 1.1.1. A copy of Table 1.1.1 is also separately submitted to AKLNG under document number USAL-FG-BRCTL-00-000001-000.

Table 1.1.1: Summary of Fugro Reports Developed for 2014, 2015 and 2016 G&G Programs

G&G Program	Report Title (Superseded Reports in Gray)	AKLNG Document Number	Fugro Report Number
	Project Execution Plan for 2014 Onshore and Marine G&G	USAL-FG-GPZZZ-00-000001-000	04.10140094-1
	Geologic Mapping Report	USAL-FG-GRZZZ-00-000001-000	04.10140094-2
	Marine Survey Report Pipeline Corridor Route 1	USAP-FG-GRZZZ-10-000001-000	04.10140094-3
	Marine Survey Report Pipeline Corridor Route 2	USAP-FG-GRZZZ-10-000002-000	04.10140094-4
	Marine Survey Report Nearshore LNG Facilities and Approach Channel	USAL-FG-GRZZZ-90-000003-000	04.10140094-5
2014	Probabilistic Seismic Hazard Analysis Report ⁽¹⁾	USAL-FG-GRHAZ-00-000001-000	04.10140094-6
	Geophysical Survey Report	USAL-FG-GRZZZ-00-000002-000	04.10140094-7
	Geotechnical Data Report Onshore LNG Facilities	USAL-FG-GRZZZ-00-000003-000	04.10140094-8
	Geologic Hazard Report ⁽²⁾	USAL-FG-GRHAZ-00-000002-000	04.10140094-9
	Hydrogeologic Report ⁽³⁾	USAL-FG-GRZZZ-00-000004-000	04.10140094-10
	Groundwater Monitoring Well Installation Report	USAL-FG-GRZZZ-00-000007-000	04.10140094-10A
	Liquefaction Potential Evaluation Report ⁽⁴⁾	USAL-FG-GRZZZ-00-000005-000	04.10140094-11
	Integrated Site Characterization and Engineering Report ⁽⁵⁾	USAL-FG-GRZZZ-00-000006-000	04.10140094-12
	Project Execution Plan for 2015 Onshore and Marine G&G Program	USAL-FG-GPZZZ-00-000002-000	04.10140334-1
	LNG Facilities Onshore Geologic Field Mapping Report	USAL-FG-GRZZZ-00-002015-004	04.10140334-2
2015	Pipeline Marine Geophysical Survey Report - Route 1	USAP-FG-GRZZZ-10-002015-013	04.10140334-3
	Pipeline Marine Geophysical Survey Report - Route 2	USAP-FG-GRZZZ-10-002015-014	04.10140334-4
	LNG Facilities Marine Geophysical Survey Report	USAL-FG-GRZZZ-90-002015-010	04.10140334-5
	LNG Facilities Probabilistic Seismic Hazard Analysis (PSHA) Report ⁽¹⁾	USAL-FG-GRHAZ-00-002015-001	04.10140334-6

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16

Report No. 04.10160001-4

G&G Program	Report Title (Superseded Reports in Gray)	AKLNG Document Number	Fugro Report Number
	LNG Facilities Onshore Geophysical Survey Report	USAL-FG-GRZZZ-00-002015-005	04.10140334-7
	LNG Facilities Onshore Geotechnical Data Report	USAL-FG-GRZZZ-00-002015-006	04.10140334-8
	LNG Facilities Marine Geotechnical Data Report	USAL-FG-GRZZZ-90-002015-011	04.10140334-9
	LNG Facilities Geologic Hazard Report ⁽²⁾	USAL-FG-GRHAZ-00-002015-002	04.10140334-10
2015	LNG Facilities Onshore Groundwater Monitoring Well Installation Report	USAL-FG-GRZZZ-00-002015-007	04.10140334-11
	LNG Facilities Onshore Hydrogeologic Report ⁽³⁾	USAL-FG-GRZZZ-00-002015-008	04.10140334-12
	LNG Facilities Seismic Engineering Report ⁽⁴⁾	USAL-FG-GRZZZ-00-002015-003	04.10140334-13
	LNG Facilities Onshore Integrated Site Characterization and Geotechnical Engineering Report ⁽⁵⁾	USAL-FG-GRZZZ-00-002015-009	04.10140334-14
	LNG Facilities Marine Integrated Site Characterization and Geotechnical Engineering Report	USAL-FG-GRZZZ-90-002015-012	04.10140334-15
	Project Execution Plan for 2016 Onshore and Marine G&G Program	USAL-FG-GPZZZ-00-002016-001	04.10160001-1
	LNG Facilities Groundwater Quality Sampling and Testing Report – Event 1	USAL-FG-GRZZZ-00-002016-003	04.10160001-2
	LNG Facilities Groundwater Quality Sampling and Testing Report – Event 2	USAL-FG-GRZZZ-00-002016-004	04.10160001-3
2016	LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report	USAL-FG-GRZZZ-00-002016-002	04.10160001-4
	LNG Facilities Onshore Geotechnical Data Report	USAL-FG-GRZZZ-00-002016-001	04.10160001-5
	LNG Facilities Onshore Hydrogeologic Report ⁽³⁾	USAL-FG-GRZZZ-00-002016-007	04.10160001-8
	LNG Facilities Seismic Engineering Report ⁽⁴⁾	USAL-FG-GRZZZ-00-002016-008	04.10160001-9
	Pipeline Marine Shallow Geotechnical Report	USAP-FG-GRZZZ-10-002016-011	04.10160001-10

G&G Program	Report Title (Superseded Reports in Gray)	AKLNG Document Number	Fugro Report Number
	LNG Facilities Marine Survey Report	USAL-FG-GRZZZ-90-002016-010	04.10160001-11
2016	LNG Facilities Onshore Integrated Site Characterization and Geotechnical Engineering Report ⁽⁵⁾	USAL-FG-GRZZZ-00-002016-009	04.10160001-12
	LNG Facilities Rigs Tenders Wharf Siltation Survey Report	USAL-FG-CRZZZ-90-002016-001	04.10160001-13

Notes: ⁽¹⁾ Fugro Report No. 04.10140334-6 supersedes Fugro Report No. 04.10140094-6.

⁽²⁾ Fugro Report No. 04.10140334-10 supersedes Fugro Report No. 04.10140094-9.

⁽³⁾ Fugro Report No. 04.10160001-8 supersedes Fugro Report Nos. 04.10140094-10 and 04.10140334-12.

⁽⁴⁾ Fugro Report No. 04.10160001-9 supersedes Fugro Report Nos. 04.10140094-11 and 04.10140334-13.

⁽⁵⁾ Fugro Report No. 04.10160001-12 supersedes Fugro Report Nos. 04.10140094-12 and 04.10140334-14.

1.2 GENERAL SCOPE OF WORK

Fugro's scope of work included the installation of four (4) OW wells and three (3) APT wells. These wells were installed near a former quarry to enable water withdrawal and aquifer monitoring to assess the nature of groundwater flow, yield, quality, and interconnectedness of the underlying water bearing units. As part of this scope of work, Fugro also installed a replacement monitoring well (designated MW-86BA), in the vicinity of the location of former monitoring well MW-86B, which was damaged during previous well completion activities and abandoned in 2016. The locations of all Site wells are depicted on Plate 2 – Investigation Plan.

Well installation, subsequent development, and data acquisition activities documented herein were conducted in accordance with a Project Execution Plan (PEP) (USAL-FG-GPZZZ-00-002016-001). Specific deviations from the PEP, which were discussed with the EMALL representatives prior to implementation included the following:

- Installation of replacement well MW-86BA.
- Installation of three (3) individual APT wells instead of two (2) APT wells. Two (2) APT wells (designated APT-1 and APT-2) were completed in Water Bearing Unit 2 and one (1) APT well (designated APT-3) was completed within Water Bearing Unit 3.

1.3 LIMITATIONS

Fugro makes no claim or representation concerning any activity or condition falling outside the specified purposes to which this report is directed. We have conducted our work using the standard level of care and diligence normally practiced by recognized engineering firms now performing similar services under similar circumstances. We intend for this report, including all illustrations, to be used in its entirety. The information presented in this report may not apply to locations not explored by borings or areas outside the project boundaries. This information should be made available to prospective users for information only, and not as a warranty of subsurface conditions.

1.4 UNIT CONVERSIONS AND ELEVATION DATUMS

The data presented herein are based on the Imperial Unit System. Table 1.4.1 provides a quick reference for conversion from Imperial Units to International System of Units (SI).

From SI System	To Imperial System	Multiply by
Kilo Newtons – kN	Kips – k	0.224809
Mega Newtons – MN	Kips – k	224.809
Kilo Newtons/meter ² – kN/m ² (kPa)	Pounds/feet ² - psf	20.885
Kilo Newtons/meter ³ – kN/m ³	Pounds/feet ³ - pcf	6.3659
Meters – m	Feet – ft	3.2808
Millimeters – mm	Inches – in.	0.03937

Table 1.4.1: Conversion Units

All coordinates are reported in Zone AK4 North, NAD83 (NSRS 2007), and are in feet. Topographic elevations for onshore areas are referenced to NAVD88. It should be noted that the marine survey report is referenced to Mean Lower Low Water (MLLW). The following conversion formula is used to convert the elevations from MLLW to NAVD88:

• Elevation, in feet (NAVD88) = Elevation, in ft (MLLW) – 7.32 ft

Please note that this conversion formula is only applicable at Nikiski Area. Elevations presented in this report, and the corresponding illustrations and engineering plates are all referenced to the NAVD88 datum, unless noted otherwise.

2.0 WELL INSTALLATION AND DATA COLLECTION

Four (4) OW wells and three (3) APT wells were installed between July 16th and September 19th, 2016 to facilitate the evaluation of the nature of groundwater flow, yield, quality, and interconnectedness of the underlying water bearing units during future aquifer pump tests. The APT and OW well locations were selected by consultation with EMALL representatives. One (1) monitoring well (MW-86BA) was installed between August 10 and 11, 2016 to replace well MW-86B which was previously damaged and abandoned in 2016.

This section of the report documents well completion details including a summary of well completion dates and construction details. Subsequent activities, including well development, slug testing, and Micro-Diver pressure transducer installation, commenced following well installation and are also discussed in this section. Locations of the wells are depicted on Plate 2 – Investigation Plan.

In general, prior to installing OW and APT wells, previous boring logs and geophysical logging records were initially reviewed to develop a general understanding of the stratigraphic materials anticipated to be encountered in Water Bearing Unit 1 (an unconfined aquifer and the first encountered aquifer in the Site area) and Water Bearing Unit 2 (a semi-confined aquifer and the second encountered aquifer in the Site area) and to identify the presence and location of aquitard materials within the proposed well locations. Well installation details were then developed in discussion with EMALL representatives for implementation by the field crews at specific well locations. During well borehole

Alaska LNG.

drilling, drill cuttings were visually classified and compared to completed borehole logging specific to each well pair location, which allowed changes to be made in the well design as work progressed.

During drilling, field screening was performed by the field logger using photo-ionization detectors (PID) to check for volatile organic compounds (VOC), hydrogen sulfide (H_2S), lower explosive limit (LEL) or methane gas, (CH₄), oxygen (O₂), and carbon monoxide. No detectable PID measurements were observed. Field measurements are documented on the respective borehole logs. Cuttings and water spray generated during the drilling were managed in accordance with the approved Method Statements (Appendix A), and given that no odors or sheen was observed, were discharged to the ground surface in the vicinity of the well locations.

2.1 OBSERVATION WELL INSTALLATION

All OWs were installed in pairs to monitor both Water Bearing Units 1 and 2. OW-1 and OW-3 were completed in Water Bearing Unit 1; OW-2 and OW-4 were completed in Water Bearing Unit 2. Well boreholes were drilled using a truck-mounted drill rig and air rotary drilling method. OW installation details included the following:

- Installing an 8-inch nominal diameter surface conductor casing to 20 feet deep, drilling a 6inch diameter boring through the conductor casing to depth.
- Installing a well screen assembly, consisting of:
 - A K Packer on top of a 5-foot nominal riser length situated above the well screen. The K Packer transitioned from 6-inch nominal diameter casing to 4-inch nominal diameter riser pipe.
 - A 20-foot long, 4"x6" nominal diameter well screen with pre-pack sand filter.
 - A three-foot interval of 6-inch nominal diameter tailpipe with base plate at the bottom of the boring.
- Installing 6-inch nominal diameter schedule 40 steel well casing from the K Packer to 3 feet above existing ground surface.
- Removal of the 20 feet of 8-inch nominal diameter surface conductor casing, and backfilling the resultant annulus with bentonite.

Borehole logs and OW installation details are presented on Plates 3 through 10. Manufacturer specifications for the K Packer and well screen are included in Appendix D. OW construction details and groundwater levels are summarized below in Tables 2.1.1 and 2.1.2, respectively.

Table 2.1.1: Observation Well Construction Details

Water Bearing Unit	Well ID	Completion Date ¹	Borehole Termination Depth (feet bgs)	Borehole/ Well Casing Diameter (inches)	Well Screen Diameter (inches)	Steel Tailpipe Termination Depth (feet bgs)	Screen Interval Depth (feet bgs)	Riser Pipe Height Above Ground (inches)
1	OW-1	7/25/2016	79.1	6.0	4.0	79.1	56.1 - 76.1	32
2	OW-2	7/20/2016	140.9	6.0	4.0	140.9	117.9 - 137.9	36
1	OW-3	7/30/2016	67.0	6.0	4.0	67.0	44.0 - 64.0	36
2	OW-4	7/28/2016	137.6	6.0	4.0	137.6	114.6 - 134.6	30

Notes:

bgs = below ground surface

1. Completion Date refers to date of well development

Table 2.1.2:	Observation	Well Groundwater Details
--------------	-------------	--------------------------

Well ID	Static Groundwater Depth (feet bgs) ^{1,2}	GW Elevation (feet) ^{1,2}
OW-1	15.29	96.94
OW-2	37.48	74.61
OW-3	34.26	97.00
OW-4	55.70	75.09
	OW-1 OW-2 OW-3	(feet bgs) 1.2 OW-1 15.29 OW-2 37.48 OW-3 34.26

Notes:

bgs = below ground surface

1. Groundwater depths measured at 18:00 hrs. on 9/22/16;

corresponding elevations are referenced to NAVD88.

2. To convert NAVD88 to MLLW add 7.32 feet.

The OW locations were surveyed by McLane Consulting Group (McLane), a qualified and licensed State of Alaska surveyor, on August 25, 2016. The elevations are referenced to Permanent Survey Monuments surveyed to the NAVD88 datum and the horizontal location information is referenced to NAD83 – NSRS2007. Data points were acquired in general accordance with the scope of work outlined in GESP-CIV-EP-006. OW surveying data are summarized below in Table 2.1.3.

Table 2.1.3: As-Built Coordinates and Elevations for Observation Wells

Water Bearing	Monitoring Well ID		oordinates D 83)	Depth (feet bgs)	As Built Elevation, Top of Casing, feet	Ground Surface Elevation, feet (NAVD88)	
Unit		Latitude	Longitude	((NAVD88)		
1	OW-1	60.66385170	-151.34463703	79.1	112.23	109.56	
2	OW-2	60.66382579	-151.34460741	140.9	112.09	109.09	
1	OW-3	60.66235654	-151.34191656	67.0	131.26	128.26	
2	OW-4	60.66238108	-151.34194479	137.6	130.79	128.29	

2.2 AQUIFER PUMP TEST WELL INSTALLATION

Three APT wells (designated APT-1 through APT-3) were installed to depths between 138 and 286 feet bgs. The APT well boreholes were drilled using a truck-mounted drill rig and air rotary drilling methods. APT well installation details included the following:

• Installing a 16-inch nominal diameter surface conductor casing to 20 feet deep, drilling a 12-inch diameter boring through the conductor casing to depth.

Alaska LNG

- Installing a well screen assembly consisting of:
 - A K Packer on top of a 5-foot nominal riser length situated above the well screen. The K Packer transitioned from 12-inch nominal diameter casing to 8-inch nominal diameter riser pipe.
 - A 27-foot long, 8-inch nominal diameter well screen (APT-2), and a 30-foot long, 8-inch nominal diameter well screen (APT-1 and APT-3).
 - A three-foot interval of 8-inch nominal diameter tailpipe with base plate at the bottom of the boring.
- Installing a 12-inch nominal diameter schedule 40 steel well casing from the K Packer to 3 feet above existing ground surface.
- Removal of the 20-feet of 16-inch nominal diameter surface conductor casing, and backfilling the resultant annulus with bentonite.

Borehole logs and APT well installation details are presented on Plates 11 through 16. Manufacturer specifications for the K Packer and well screen are included in Appendix D. APT well construction details and groundwater levels are summarized below in Tables 2.2.1 and 2.2.2, respectively.

Water Bearing Unit	Well ID	Completion Date ¹	Borehole Termination Depth (feet bgs)	Borehole / Steel Casing Diameter (inches)	Well Screen Diameter (inches)	Steel Tailpipe Termination Depth (feet bgs)	Screen Interval Depth (feet bgs)	Riser Pipe Height Above Ground (inches)
2	APT-1	9/13/2016	135.0	12	8.0	135.0	102.0 – 132.0	36
2	APT-2	9/19/2016	138.5	12	8.0	138.5	108.5 - 135.5	36
3	APT-3	9/3/2016	437.0	12	8.0	286.0	253.0 - 283.0	36

 Table 2.2.1: Aquifer Pump Test Well Construction Details

Notes:

bgs = below ground surface

1. Completion Date refers to date of well development

Water Bearing Unit	Well ID	Static Groundwater Depth (feet bgs) ^{1,2}	GW Elevation (feet) ^{1,2}
2	APT-1	47.87	72.22
2	APT-2	55.64	74.35
3	APT-3	72.97	45.86

Table 2.2.2: Aquifer Pump Test Well Groundwater Details

<u>Notes:</u> bgs = below ground surface

Groundwater depths measured at 18:00 hrs. on 9/22/16;

corresponding elevations are referenced to NAVD88.

2. To convert NAVD88 to MLLW add 7.32 feet.

The APT well locations were surveyed by McLane on September 26, 2016. The elevations are referenced to Permanent Survey Monuments surveyed to the NAVD88 datum and the horizontal location information is referenced to NAD83 – NSRS2007. Data points were acquired in general accordance with the scope of work outlined in GESP-CIV-EP-006. APT well surveying data are summarized below in Table 2.2.3.

Water Bearing	Monitoring Well ID		Coordinates AD 83)	Depth (feet bgs)	As Built Elevation, Top of Casing, feet	Ground Surface Elevation, feet (NAVD88)	
Unit		Latitude	Longitude	((NAVD88)		
2	APT-1	60.66315390	-151.3470609	135.0	120.09	117.09	
2	APT-2	60.66107404	-151.3419546	138.5	129.99	126.99	
3	APT-3	60.66312928	-151.3469876	286.0	118.83	115.83	

2.3 GROUNDWATER MONITORING WELL INSTALLATION

In 2016, well MW-86B was selected to be retrofitted due to a missing bentonite seal above the permeable sand columns. Denali Drilling, Inc. (Denali) was engaged to conduct over-drilling of this well with hollow-stem auger drilling methodologies, around the initially installed 2-inch PVC well casing, to remove the upper 10-feet of annular materials. During the drilling operations, PVC casing was damaged and the decision was made to abandon well MW-86B in place. As a result, the annulus and inside of the well were backfilled with a cement-bentonite grout mix.

A replacement well (designated MW-86BA) was installed approximately 10-feet west of abandoned well MW-86B. Replacement well MW-86BA was installed using a truck mounted drill rig and hollow-stem auger drilling techniques. As well MW-86B was observed to be a dry well, the replacement well was installed into a borehole which was extended to the top of the aquitard separating Water Bearing Units 1 and 2. In general, well construction details included the following:

• Placing hydrated-bentonite chips from the bottom of the borehole to bottom of the proposed well depth.

- Installing a 2-inch nominal diameter PVC well comprising a solid riser, well screen, and a lower silt trap above the hydrated-bentonite chip layer.
- Placing sand above the top of the hydrated-bentonite chip layer and around the screen section, to 3 feet above the top of the screen section.
- Placing another hydrated-bentonite chip layer above the sand, followed by bentonite grout to function as the well sanitary seal.
- Placing bentonite chips, followed by a layer of gravel, was then placed on top of the bentonite grout and extending to the ground surface.

A borehole log and well installation details are presented on Plates 17 and 18, respectively. Well construction details are also summarized below in Table 2.3.1. For consistency and to aid in comparing data, information collected during all phases of field investigation are included in this table.

Table 2.3.1: Monitoring Well Construction Details

Water Bearing Unit	Well ID	Completion Date ⁽¹⁾	Nominal Borehole Diameter (inches)	Nominal Borehole Termination Depth (feet)	PVC Casing Termination Depth (feet)	PVC Casing Diameter (inches)	Screen Interval Depth (feet)	Groundwater Depth (feet, BTOC)	Groundwater Elevation (feet) (NAVD88) ⁽²⁾
	MW-14B	11/20/2014	8.25	56.0	55.0	2	30.0 - 50.0	44.60	91.64
	MW-27B	11/17/2014	8.25	57.0	56.0	2	31.0 - 51.0	34.25	92.54
	MW-39B	11/17/2014	8.25	40.0	39.0	2	14.5 - 34.5	25.13	72.62
	MW-50B	11/20/2014	8.25	55.5	55.0	2	30.0 - 50.0	45.20	89.47
	MW-62B	8/15/2015	4.00	47.0	46.5	2	20.5 - 41.0	NA	NA
	MW-74B	9/4/2015	4.00	81.0	80.4	2	54.4 - 74.9	41.46	72.92
	MW-77B	8/6/2015	4.00	61.0	60.8	2	34.8 - 55.3	NA	NA
Water	MW-80B	8/28/2015	4.00	61.7	60.9	2	34.9 - 55.4	48.95	84.69
Bearing Unit 1	MW-82B	9/4/2015	4.00	52.0	51.3	2	14.8 - 45.8	23.24	99.21
	MW-86B ⁽³⁾	8/6/2015	4.00	42.0	41.0	2	14.6 - 35.1	NA	NA
	MW-86BA	8/19/2016	4.00	66.0	63.5	2	42.5 - 63.0	55.75	71.23
	MW-87B	8/17/2015	4.00	52.5	51.0	2	25.0 - 45.5	30.29	79.56
	MW-91B	9/9/2015	4.00	64.0	63.6	2	37.6 - 58.1	NA	NA
	MW-98B	9/17/2015	4.00	43.0	42.3	2	5.8 - 36.8	33.92	91.30
	MW-112B	9/15/2015	4.00	61.0	60.8	2	34.8 – 55.3	NA	NA
	MW-138B	9/14/2015	4.00	43.3	43.3	2	6.8 - 37.8	23.38	82.84
	MW-39A	11/16/2014	4.00	147.0	146.0	2	120.5 – 141.0	64.51	33.48
	MW-50A	11/17/2014	4.00	146.0	145.0	2	120.0 - 140.0	66.12	69.00
	MW-62A	8/19/2015	4.00	145.4	143.4	2	117.4 - 137.9	79.91	50.01
	MW-74A	9/2/2015	4.00	159.0	153.5	2	133.0 - 153.5	51.14	63.36
	MW-77A	8/9/2015	4.00	146.0	143.4	2	117.4 - 137.9	90.55	28.69
Water Bearing	MW-82A	8/28/2015	4.00	150.0	143.5	2	117.5 - 138	26.84	94.84
Unit 2	MW-86A	8/9/2015	4.00	146.0	145.2	2	119.2 - 139.7	70.46	56.83
	MW-91A	9/2/2015	4.00	146.0	144.8	2	118.8 - 139.3	104.27	15.71
	MW-98A	9/20/2015	4.00	116.0	114.9	2	87.9 - 114.9	98.44	26.81
	MW- 112AA	10/1/2015	4.00	115.0	112.5	2	85.5 - 107.0	98.67	19.50
	MW-138A	9/14/2015	4.00	146.8	146.8	2	120.8 - 141.3	44.96	61.28

Notes:

1. Completion Date refers to date of well development

2. Groundwater depths measured at 18:00 hrs. on 9/22/16; corresponding elevations are referenced to NAVD88.

3. Well subsequently abandoned in place following damage to the well casing during well seal placement in 2016.

4. To convert NAVD88 to MLLW add 7.32 feet.

5. NA = Not Applicable

The location of well MW-86BA was surveyed by McLane on August 25, 2016. The elevation is referenced to Permanent Survey Monuments surveyed to the NAVD88 datum and the horizontal location information is referenced to NAD83 – NSRS2007. The data point was acquired in general accordance with the scope of work outlined in GESP-CIV-EP-006. Survey data are summarized in

Table 2.3.2. For consistency and to aid in comparing data, information collected during all phases of investigation are included in this table.

Water Bearing	Monitoring Well ID		oordinates NSRS 2007)	Well Depth (feet bgs)	As Built Elevation, Top of Casing, feet	Ground Surface Elevation, feet	
Unit	_	Latitude	Longitude	(1001 590)	(NAVD88)	(NAVD88)	
	MW-14B	60.67001490	-151.35376400	55.0	136.24	133.40	
	MW-27B	60.66445950	-151.35037400	56.0	126.79	124.35	
	MW-39B	60.65560510	-151.35613500	39.0	97.75	95.51	
	MW-50B	60.67526070	-151.35336700	55.0	134.67	131.66	
	MW-62B	60.67373017	-151.36896400	46.0	130.44	127.63	
	MW-74B	60.66822293	-151.36390200	80.5	114.38	111.53	
Water	MW-77B	60.66654214	-151.37506300	60.5	119.04	116.25	
Bearing	MW-80B	60.66660888	-151.35796500	60.7	133.64	130.99	
Unit 1	MW-82B	60.66654604	-151.34358300	51.3	122.45	119.22	
	MW-86BA	60.66299257	-151.36456512	62.0	126.98	124.73	
	MW-87B	60.66293920	-151.35826100	51.0	109.85	106.91	
	MW-91B	60.66131503	-151.36858400	64.0	119.87	117.31	
	MW-98B	60.65952300	-151.36003300	42.0	125.22	122.26	
	MW-112B	60.65124196	-151.35847800	60.0	118.67	115.76	
	MW-138B	60.65927616	-151.34973400	43.7	106.22	103.33	
	MW-39A	60.65557930	-151.35615700	146.0	97.99	95.51	
	MW-50A	60.67523060	-151.34331500	145.0	135.12	131.66	
	MW-62A	60.67372736	-151.36900800	144.0	129.92	127.36	
	MW-74A	60.66825113	-151.36390300	160.0	114.50	111.70	
Water	MW-77A	60.66655739	-151.37507200	146.0	119.24	116.31	
Bearing	MW-82A	60.66651744	-151.34354400	144.0	121.68	118.58	
Unit 2	MW-86A	60.66301342	-151.36452000	145.0	127.29	124.44	
	MW-91A	60.66133530	-151.36859500	144.5	119.98	117.27	
	MW-98A	60.65949114	-151.36000900	115.4	125.25	122.17	
	MW-112AA	60.65125990	-151.35845000	112.5	118.17	115.55	
	MW-138A	60.65926678	-151.34969500	147.0	106.24	103.22	

Table 2.3.2: As-Built Coordinates and Elevations for Monitoring Wells

2.4 WELL DEVELOPMENT

Development methodologies for the four OWs, three APT wells, and the new groundwater monitoring well are presented below.

2.4.1 Observation Well and Aquifer Pump Test Well Development

Development of the OW and APT wells was performed by agitating and purging the water within the wells using either a pump or through air lifting methodologies. No sheen, odors, or discoloration of well development groundwater was observed during well development. A summary of the OW and APT well development program records and details are presented in Table 2.4.1.1.

Table 2.4.1.1: Observation Well and Aquifer Pump Test Well Development Records

Water Bearing Unit	Well ID	Date of Well Development	Dry or Pumped Dry	Assumed Casing Volume, gallons ⁽¹⁾	Approximate Gallons of Water Flushed Through Screen	Approximate Number of Casing Volumes of Water Flushed Through Screen
1	OW-1	7/25/16	No	29.4	1,500	51.0
2	OW-2	7/20/16	No	152.8	283	1.9
1	OW-3	7/30/16	No	NA ²	1,045	NA ²
2	OW-4	7/28/16	No	122.5	1,350	11.0
2	APT-1	9/12/16	No	399.0	7,540	18.9
2	APT-2	9/19/16	No	221.0	7,000	31.7
3	APT-3	9/3/16	No	712.0	1,835	2.6

<u>Notes:</u> 1. Estimates of the volume of water removed from a well during development is presented in units of the casing volume of water present. Casing volumes for development is based on observed feet of water within the casing as measured at the beginning of well development, and at a minimum no less than the feet of screened well length.

2. Not Available, initial depth to water could not be measured. Water was added to equalize pressure due to heaving sand conditions.

Water generated during OW development was discharged to the ground surface in accordance with the approved Method Statements (Appendix A). No odor or sheen was observed; no detectable PID measurements were observed.

Based on a review of preliminary water quality data from the OW sampling event, well development water from each APT well was individually containerized and temporarily stored onsite. Preliminary data showed low level detections of select analytes, including arsenic, chloromethane, and trichloroethene, from an unknown source in the well area. Samples were collected from the APT well development water and analyzed to facilitate offsite waste disposal as summarized below.

2.4.1.1 Aquifer Pump Test Well Development Water

Between September 6 and 19, 2016, field personnel from Fugro and SLR International Corp (SLR, a subcontractor retained by Fugro to assist with sampling activities) visited the Site to collect samples of the containerized well development water from each APT well in order to characterize the water for offsite disposal. Samples were retained in analyte-appropriate containers pre-cleaned by the laboratory in accordance with Environmental Protection Agency (EPA) protocols. All sampling containers were uniquely labeled and placed in ice-filled coolers, pending delivery to the testing laboratory.

Following sample collection, the well development water samples were packed and shipped under chain-of-custody documentation to SGS North America Inc. (SGS) in Anchorage, Alaska, an Alaska Department of Environmental Conservation (ADEC)-certified testing laboratory. A total of three

samples, APT-1-DEV-TK-0916 through APT-3-DEV-TK-0916, were analyzed for the constituents presented below in Table 2.4.1.1.1.

Table 2.4.1.1.1: Aquifer Pump Test Well Development Water Analytical Testing Parameters

Parameter	Method
Volatile Organic Compounds (VOCs)	EPA SW8260B
Total Metals – As, Ba, Cd, Cr, Pb, Hg, Se, Au	EPA SW6020A
рН	SM21 4500-H B

Analytical results are summarized in Table B-1 and are summarized below by well. Table B-1 and the analytical laboratory reports are presented in Appendix B.

APT-1 Development Water

- With the exception of toluene and trichloroethene, no VOCs were detected in the sample analyzed. Toluene and trichloroethene were reported at concentrations of 0.00225 milligrams per liter (mg/L) and 0.00158 mg/L, respectively.
- Analyses reported a pH value of 8.3 Standard Units (SU).
- For the metals, analyses detected 0.027 mg/L of arsenic, 0.0277 mg/L of barium, 0.00165 • mg/L of chromium, and 0.000796 of lead in the sample analyzed.

APT-2 Development Water

- With the exception of chloromethane and toluene, no VOCs were detected in the sample analyzed. Chloromethane and toluene were reported at concentrations of 0.00031 mg/L and 0.00088 mg/L, respectively.
- Analyses reported a pH value of 8.3 SU. •
- For the metals, analyses detected 0.0369 mg/L of arsenic, 0.0917 mg/L of barium, 0.0208 • mg/L of chromium, 0.00412 mg/L of lead, and 0.000197 mg/L of mercury in the sample analyzed.

APT-3 Development Water

- Several VOCs including 1,2,4-trimethylbenzene (0.0023 mg/L), 1,3,5-trimethylbenzene (0.00067 mg/L), n-Propylbenzene (0.0004 mg/L), toluene (0.00324 mg/L), and trichloroethene (0.00262 mg/L) were reported in the sample analyzed.
- Analyses reported a pH value of 8.8 SU.
- For the metals, analyses detected 0.0775 mg/L of arsenic, 0.361 mg/L of barium, 0.101 • mg/L of chromium, and 0.0237 mg/L of lead in the sample analyzed.

Based on the results for samples collected from the containerized water, the water generated from the development of the APT wells was removed from the Site between September 15 and October 5, 2016 and disposed as a non-hazardous waste by NRC Alaska LLC at their facility in Anchorage, Alaska. Copies of the non-hazardous waste manifests are presented in Appendix C.

2.4.2 Monitoring Well Development

Well MW-86BA was developed by flushing the well with water until the discharge water was clear. The well screen was then agitated in 1 to 2-foot intervals using a surge block. The well was then flushed with water again until the discharged water was clear. No sheen, odors, or discoloration of well development groundwater was observed during well development. Well development water was discharged onto the ground surface.

A summary of the monitoring well development program records and details are presented in Table 2.4.2.1. For consistency and to aid in comparing data, information collected during all phases of field investigation are included in this table. In some cases, wells were dry following installation or were pumped dry during development. In these cases, clean water was introduced to complete the flushing and settling of the sand pack. Wells which were dry or which were pumped dry are indicated as such in the table.

Water Bearing Unit	Well ID	Date of Well Development	Dry or Pumped Dry	Assumed Casing Volume, gallons ⁽¹⁾	Approximate Gallons of Water Flushed Through Screen	Approximate Number of Casing Volumes of Water Flushed Through Screen
	MW-14B	11/20/14	No	3.3	109	33
	MW-27B	11/17/14	No	3.3	60	18
	MW-39B	11/17/14	No	3.3	34	10
	MW-50B	11/20/14	No	3.3	27	8
	MW-62B	8/18/15	Yes	3.3	150	45
	MW-74B	9/6/15	No	8.2	50	6
Water	MW-77B	8/18/15	Yes	3.3	250	75
Bearing	MW-80B	9/6/15	No	3.3	150	45
Unit 1	MW-82B	9/6/15	No	4.9	75	15
	MW-86BA	8/11/16	No	NA ²	NA ²	NA ²
	MW-87B	8/19/15	No	3.3	150	45
	MW-91B	9/21/15	Yes	3.3	50	15
	MW-98B	9/22/15	No	4.9	50	10
	MW-112B	9/21/15	Yes	3.3	50	15
	MW-138B	9/22/15	No	4.9	100	20
	MW-39A	11/16/14	No	12.4	100	8
	MW-50A	11/17/14	No	12	78	6
	MW-62A	8/19/15	No	9.5	300	31
	MW-74A	9/5/15	No	16.8	175	10
Water	MW-77A	8/19/15	No	8.2	200	24
Bearing	MW-82A	9/5/15	No	17.1	150	9
Unit 2	MW-86A	8/19/15	No	11.5	300	26
	MW-91A	9/5/15	No	5.1	100	20
	MW-98A	9/22/15	No	4.1	150	37
	MW-112AA	10/3/15	No	5.2	250	48
	MW-138A	9/22/15	No	16.5	200	12

Table 2.4.2.1: Monitoring Well Development Records

Note:

1. Estimates of the volume of water removed from a monitoring well during development is presented in units of the casing volume of water present. Casing volumes for development is based on observed feet of water within the casing or as measured at the beginning of well development, and at a minimum no less than the feet of screened well length.

2. NA = Not Available, initial depth to water was not measured. Water was added to flush the well initially for 5 minutes, then surged, then flushed again for 10 minutes until discharge water ran clear. At least 250 gallons of water was introduced, however, the total volume of water used for flushing or removed during purging was not recorded.

2.5 Hydraulic Testing

Changes in water levels measured and recorded during well development and during slug testing were processed using the Hvorslev Method to preliminarily evaluate hydraulic conductivity. The derived

hydraulic conductivity values are shown in Table 2.5.1. For consistency and to aid in comparing data, information collected during all phases of field investigation are included in this table.

Water Bearing Unit	Well ID	Date of Well Development	Methodology	Hydraulic Conductivity in feet/day Hvorslev Method of Analysis
	MW-14B	11/20/14	Slug Test	51.32
	MW-27B	11/17/14	Slug Test	129.34
	MW-50B	11/20/14	Slug Test	22.91
Water Bearing	MW-74B	9/6/15	Slug Test	9.38
Unit 1	MW-98B	9/22/15	Slug Test	0.10
	OW-1	7/25/16	Development by Air Lift Methods	NA
	OW-3	7/30/16	Development by Air Lift Methods	NA
	MW-39A	11/17/14	Slug Test	96.16
	MW-50A	11/17/14	Slug Test	28.25
	MW-62A	8/19/15	Slug Test	8.86
	MW-74A	9/5/15	Slug Test	0.18
	MW-77A	8/19/15	Slug Test	1.29
Water	MW-82A	9/5/15	Slug Test	0.22
Bearing Unit 2	MW-91A	9/5/15	Slug Test	33.18
Unit 2	MW-138A	9/22/15	Slug Test	0.19
	OW-2	7/20/16	Development by Air Lift Methods	NA
	OW-4	7/28/16	Development by Air Lift Methods	NA
	APT-1	9/12/16	Development by Pumping	30.40
	APT-2	9/19/16	Development by Pumping	49.90
Water Bearing Unit 3	APT-3	9/1/16 & 9/3/16	Development by Pumping	0.12

Table 2.5.1: Hydraulic Test Results

Notes: NA, Not Available. Utilization of the air lift method of development precluded any additional instrumentation to be downhole during development. Micro-Divers installed post-development.

2.6 Pressure Transducers

Fugro installed an instrumentation system to measure groundwater levels and to allow wireless retrieval of water level data from each well location. The instrumentation system, acquired from Schlumberger Water Services, is referred to as the Diver-NETZ system, and consists of the following components:

- *Micro-Diver* absolute (non-vented) pressure transducer used to measure water pressure (which is converted to a pressure head by the data logger) and temperature, and to store the data.
- **Diver-DXT** short range radio transmitter with built in barometer that connects to the diver unit via a coaxial cable and wirelessly connects to a Diver-Gate unit for data transmission.
- **DXT Cable** coaxial cable for suspending the Micro-Diver unit in the riser pipe, and transmitting data from the Micro-Diver to the Diver-DXT transmitter.
- **Diver-Gate** portable modem device used to connect the Diver-DXT transmitter to a mobile handheld device or laptop computer via Bluetooth connection for data transmission.

The groundwater level data is collected wirelessly utilizing the handheld Diver-Gate, along with periodic data downloads using a portable laptop at the well locations. A list of the equipment installed downhole and the setting of the Micro-diver is identified in Table 2.6.1. For consistency and to aid in comparing data, information collected during all phases of field investigation are included in this table.

Water Bearing Unit	Monitoring Well ID	Final DXT Cable Length, feet.	Elevation of Micro- Driver, feet (NAVD88)	Micro-Diver Serial No.	Diver-DXT Serial No.		
	MW-14B	49.7	86.54	S3097	E2164		
	MW-27B	49.7	77.09	R2357	E2532		
	MW-39B	34.7	63.05	R2351	E2311		
	MW-50B	50.4	84.27	R2349	E2153		
	MW-62B	42.5	87.94	R6888	E2888		
	MW-74B	75.0	39.38	R6876	E2951		
	MW-77B	57.0	62.04	R6895	E3398		
Water	MW-80B	50.1	83.54	R6873	E2418		
Bearing Unit 1	MW-82B	45.0	77.45	R6868	E2970		
	MW-86BA	65.0	61.98	S6399	E3016		
	MW-91B	59.0	60.87	S6396	E2940		
	MW-98B	40.2	85.02	R2352	E3373		
	MW-112B	57.0	61.67	R7654	E3315		
	MW-138B	38.1	68.12	R8434	E3389		
	OW-1	79.0	33.23	U7033	E4268		
	OW-3	67.0	64.26	U7025	E4318		
	MW-39A	140.9	-42.91	R2346	E2285		
	MW-50A	139.6	-4.48	R2354	E2274		
	MW-62A	139.8	-9.88	R6887	E3394		
	MW-74A	150.2	-35.70	R6875	E3304		
	MW-77A	140.2	-20.96	R6894	E3384		
	MW-82A	140.2	-18.52	R8437	E2910		
	MW-86A	139.8	-12.51	S4378	E2908		
Water	MW-87A	45.1	64.75	R6891	E3285		
Bearing Unit 2	MW-91A	141.5	-21.52	R6886	E2898		
	MW-98A	110.0	15.25	R6892	E3361		
	MW-112AA	109.0	9.17	R7653	E3258		
	MW-138A	145.3	-39.06	R8433	E3413		
	OW-2	140.0	-27.91	U7028	E4277		
	OW-4	137.0	-6.21	U7023	E4303		
	APT-1	91.0	29.09	S6424	E4315		
	APT-2	91.0	38.99	S6401	E4275		
Water Bearing Unit 3	APT-3	250.1	-131.27	T7714	E4356		

Table 2.6.1: Diver-NETZ System Components for Well Locations

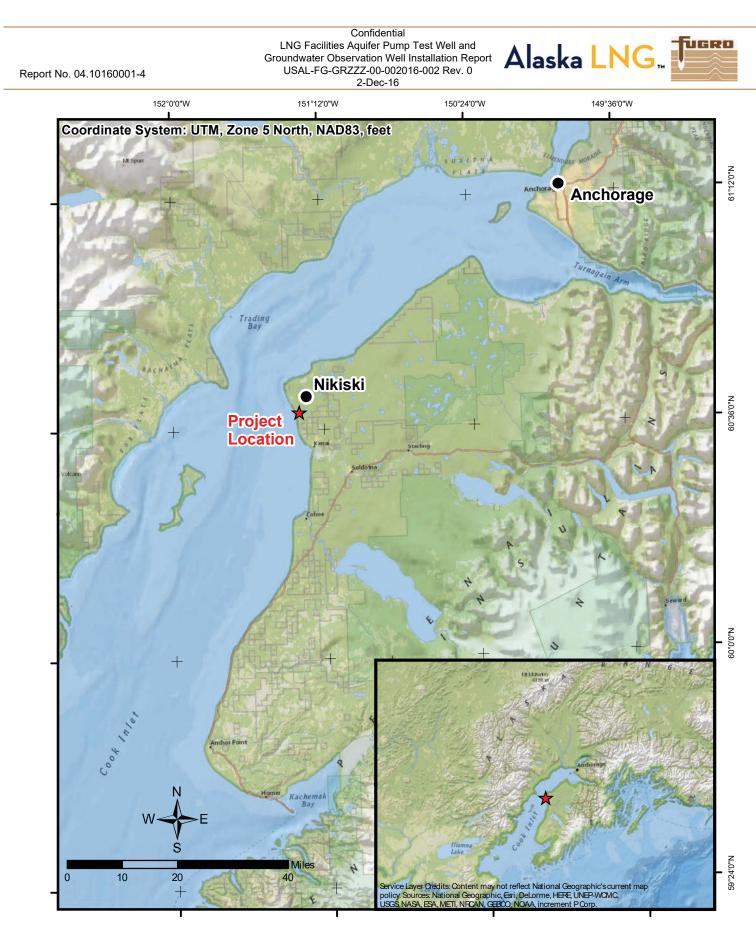
3.0 CONCLUSIONS

Fugro's scope of work included the installation of four (4) OW wells and three (3) APT wells. These wells were installed near a former quarry to enable water withdrawal and aquifer monitoring to assess the nature of groundwater flow, yield, quality, and interconnectedness of the underlying water bearing units. As part of this scope of work, Fugro also installed a replacement monitoring well, MW-86BA, in the vicinity of former monitoring well MW-86B which was damaged during previous well completion activities and abandoned in 2016.

Accordingly, a total of twenty-six (26) groundwater monitoring wells, four (4) OW, and three (3) APT wells have been installed at the Site between 2014 and 2016 and comprise the well network for the Site. Based on lithologic data, fifteen (15) wells are screened within Water Bearing Unit 1, seventeen (17) wells are screened within the Water Bearing Unit 2, and one (1) well is screened within Water Bearing Unit 3. The thirty-three (33) wells can be used for future groundwater quality monitoring and ongoing assessment of aquifer characteristics at the Site, as well as for future aquifer pump tests.

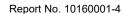
4.0 REFERENCES

- Conoco Phillips, 2012, Topographic and Plant Surveys Specifications (Overlay to PIP CBS02005), April 1, 2012 AKLNG Document No. GESP-CIV-EP-006, Rev. 2.
- Fugro Consultants, Inc. (Fugro), 2016, Project Execution Plan for 2016 Onshore and Marine G&G Program, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-1, AKLNG Document No. USAL-FG-GPZZZ-00-002016-001
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Groundwater Quality Sampling and Testing Report - Event 1, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-2, AKLNG Document No. USAL-FG-GRZZZ-00-002016-003
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Groundwater Quality Sampling and Testing Report - Event 2, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-3, AKLNG Document No. USAL-FG-GRZZZ-00-002016-004
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Onshore Geotechnical Data Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-5, AKLNG Document No. USAL-FG-GRZZZ-00-002016-001
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Onshore Hydrogeologic Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-8, AKLNG Document No. USAL-FG-GRZZZ-00-002016-007.
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Seismic Engineering Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-9, AKLNG Document No. USAL-FG-GRZZZ-00-002016-008
- Fugro Consultants, Inc. (Fugro), 2016, Pipeline Marine Shallow Geotechnical Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-10, AKLNG Document No. USAP-FG-GRZZZ-10-002016-011
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Marine Survey Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-11, AKLNG Document No. USAL-FG-GRZZZ-90-002016-010
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Onshore Integrated Site Characterization and Geotechnical Engineering Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-12, AKLNG Document No. USAL-FG-GRZZZ-00-002016-009
- Fugro Consultants, Inc. (Fugro), 2016, LNG Facilities Rigs Tenders Wharf Siltation Survey Report, Alaska LNG Project, Nikiski, Alaska, Report No. 04.10160001-13, AKLNG Document No. USAL-FG-CRZZZ-90-002016-001
- Fugro Consultants, Inc. (Fugro), 2016, Well Sampling Method Statement, Report No. Hydro-01, Issue 1, Rev.1.
- Fugro Consultants, Inc. (Fugro), 2016, APT Well Installations and Aquifer Pump Tests Method Statement, Report No. Hydro-02, Issue 1, Rev. 0.


Fugro Consultants, Inc. (Fugro), 2016, A Roadmap to Fugro G&G Reports Covering Site Investigation Campaigns in 2014, 2015 & 2016, Alaska LNG Project, Nikiski, Alaska, AKLNG Document No. USAL-FG-BRCTL-00-000001-000, Rev.0

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16 Report No. 04.10160001-4

ILLUSTRATIONS



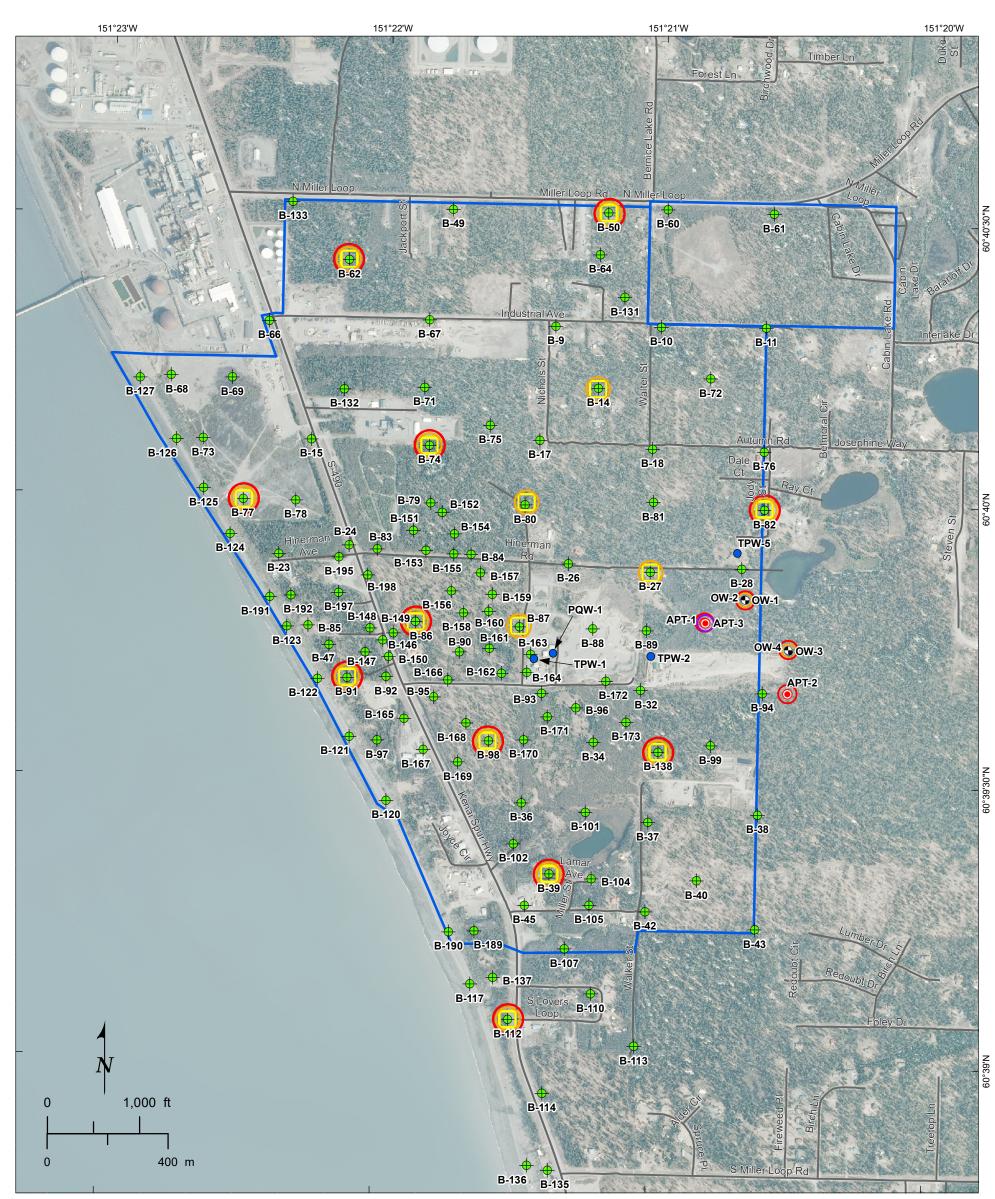

VICINITY MAP ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

PLATE 1

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16

_Well_Inst

P:\Projects\10_0000\10_160001_AKLNG_2016\05_Graphics\04.10160001

LEGEND

- Onshore Borings (completed)
 - Monitoring Well Locations
 - Note: colocated well pairs are present at locations B-39, B-50, B-62, B-74, B-77, B-82, B-86, B-91, B-98, B-112, and B-138
 - Onshore LNG Facilities Study Area
- APT Well
- Observation Well Pair
- Third Party Well
- Shallow Well Water Bearing Unit 1
- Intermediate Well Water Bearing Unit 2
- Deep Well Water Bearing Unit 3

INVESTIGATION PLAN ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

eport	No. (04.1	0160	000 ⁻	1-4		LNG Facil Groundwater USAL-FC	ities Ac Observ G-GRZZ	vation	Pump T Well In 002016	est Well ar stallation R 6-002 Rev.0	eport			Α	ask	a L	NG						
ELEVATION, FT	DEPTH, FT MATERIAL	SYMBOL SAMPLE NO.		SAMPLER	BLOWS/FT		MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE		DRY UNIT V 5 30 INDEX TE	45 6	0	10 L UN ksf 1.0		D SHEAR	STRENG		DE					
			2				TOPSOIL: soft, loose silty sand, with roots, and organic material (wood chips) SANDY GRAVEL (GP): light gray to olive gray, dry, subrounded to subangular gravel to 0.75-in, 15% medium sand	2.0		- % · · ·					2.		4.		V Contraction of the second se					
- 100 ₁ ,			3			¥	SANDY GRAVEL (GW): wet, subrounded gravel, with few brown and white, coarse sand clasts at 13.5 ft - with medium to coarse sand 17.0 ft to 22.0 ft	12.0	0										*					
⁹⁰ 2			5				 with trace silt at 22.0 ft (LN: increasing sand content) dark gray, 0.5-in to 1.0-in, subrounded gravel, medium sand, with traces of white sand and gravel clasts, and traces of dark brown sand and gravel clasts below 22.0 ft 	27.0	0										¥ ¥					
80 ₃₁	0		7				 SAND (SP): olive gray, saturated, fine sand, with few lignite particles, with trace silt SAND (SW): olive gray, saturated, fine to medium sand, with few white and dark brown clasts with traces subrounded gravel clasts, 32.0 ft to 32.5 ft 	32.0																
70 ₄ 1	0		9				 SAND (SP): dark gray, saturated, fine, with few white and brown clasts, with traces coarse sand clasts - with traces of subrounded gravel to 0.75-in, below 42.0 ft 												*					
60 ₅ ,	0 0 0 0 						SANDY GRAVEL / GRAVELLY SAND (GP/SW): dark gray, saturated, 0.25-in to 1-in gravel, subrounded, fine to medium sand interbeded - with traces of coarse sand, and few white clasts at 52.0 ft - with subrounded gravel, 52.0 ft to 58.5 ft	47.0	0										*					
50 6			12 13				 with medium to coarse sand and white clasts below 52.0 ft increasing gravel content, dark gray, wet, subrounded to 1.5-in, medium to coarse sand, with white clasts SAND (SW): dark gray, wet, fine to medium grained sand, with 	62.0	0										*					
40 7			14 15				SAND (SW): dark gray, wet, fine to medium grained sand, with few, subrounded gravel to 0.75-in and few white clasts, saturated, subrounded gravel to 0.75-in												*					
30 .			16 17				SAND (SP): dark gray, wet, few, subrounded gravel to 0.5-in, with white clasts	77.0 79.0											¥ 					
8							- CLAY (CL): dark gray, hard, damp, plastic, with fine to medium sand at 79.0 ft																	
20 ₉	0 -																							
^{- 10} 10	0 -																							

 - 0 ₁₁₀ -				
10 ₁₂₀				

 NOTES:

 1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.

 2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.

 3) DN = Driller's Note

 4) ♥ = PID (ppm)

 5) ¥ = Initial water level during drilling

 6) ¥ = Static water level after drilling

 6) W = STON DEDTUL 70.4 ft

 o) # = Static water level after drilling

 COMPLETION DEPTH: 79.1 ft

 COORDINATES: LONG: -151.34463703
 LAT: 60.66385170 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees)

 SURFACE ELEVATION: 109.56 ft (NAVD88)
 BORING LOG

 EXPLORATION START DATE: 9/20/2016
 ONSHORE LNG F

 COMPLETION DATE: 7/21/2016
 ONSHORE LNG F

 LOGGED BY: D. Sadoff
 ALA SKA LNIC D

BORING LOG OW-1 ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 3

Alaska LNG Project Report No. 04.10160001-4

DRILLER: MW Drilling				PROJECT:	04.10160001
DRILL RIG: Ingersol Rand T2W	COORDINATES (NAD83)	ELEVATION (ft, N/	LOCATION:	Nikiski, Alaska	
METHOD: Air rotary	60.66385170 Lat.	GROUND SURFACE:	106.66	DATE STARTED:	7/20/2016
LOGGER: DS	-151.344103703 Lon.	CASING (TOP):	109.56	DATE COMPLETED:	7/25/2016

Confidential

USAL-FG-GRZZZ-00-002016-002 Rev. 0

2-Dec-16

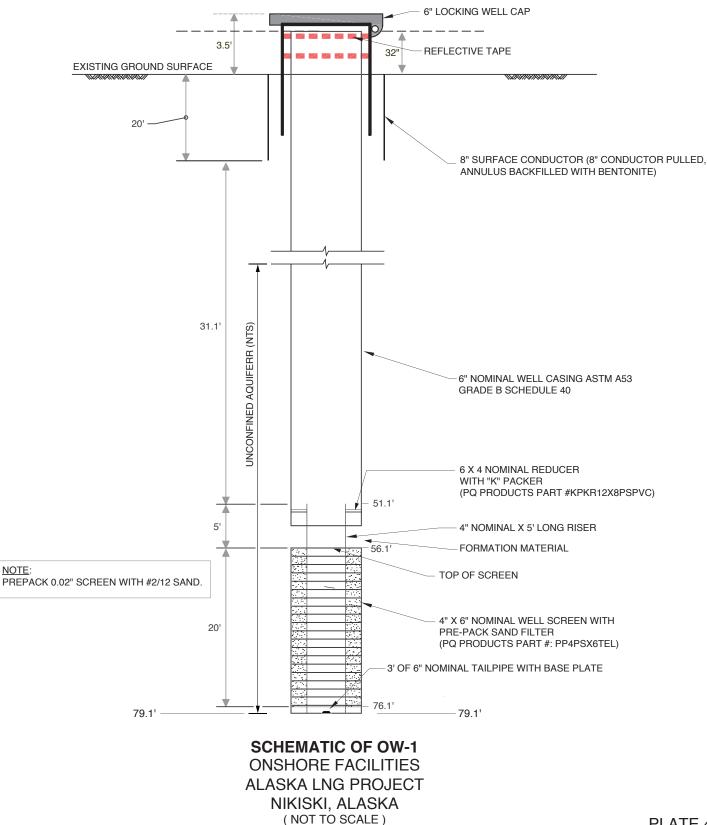


PLATE 4

eport No.	. 04.10	16000	01-4	Groundwa	acilities ter Obse -FG-GR	ervation	n Well)-0020	Installa	ation F	Report			Α	lask	a LN	١G	тм		
TION, FT	N N	ER	S/FT		ΣĮ			DRY L	JNIT W	/EIGHT			S	SPT N _{field} -VA	ALUE			OIONI	
ELEVATION, DEPTH, FT MATERIAL	SYMBOL SAMPLE NO.		BLOWS/FT	MATERIAL DESCRIPTION	STRATUM	% PASSING #200 SIEVE	pcf %		90 4 0EX TE	45 6 STS 60 8	0 0	ksf		ED SHEAR	30 40 R STRENGTH 3.0 4.0	1	R	ECTOI EADIN 40 6	IGS
				TOPSOIL: SILTY SAND:: loose, moist, fine sand, with organi material (wood chips)	c												Ĭ		
100 10				SANDY GRAVEL (GP): light gray, 15% medium sand, gravel clasts and sand - subangular gravel to 0.75-in	4	.0											▼		
100 10-	2			- (LN: becoming subrounded gravel at 10.75 ft to 0.75-in)													*		
	3		7	 ⁷ SANDY GRAVEL (GW): wet, coarse sand, with minor white clasts, subrounded sand (good water producer), and rare sill below - (LN: increasing sand content ~40% at 13.0 ft) 	13	.0											¥		
90 20	4		·	GRAVELLY SAND (SW): medium to coarse, subrounded	20	.0		_											
	5			gravel and subrounded sand - (LN: decreasing gravel at 23.0 ft)	25	0													
80				SAND (SW): olive gray, wet, fine to medium sand, with traces (~3%) subrounded gravel (0.5-in), with silt content increasin	g 20	.0													
30 -	6																*		
70	7		4	SILTY SAND (SM): olive gray to dark gray, wet, fine sand, wit minor medium sand and white, subangular clasts, rare, subangular gravel 35.5 ft to 0.5-in	35 h	.0											¥		
70 40	8			SAND (SW): olive gray to dark gray, saturated, fine to coarse subrounded to subangular sand, with trace of red and white sand and gravel	40	.0											¥ ¥		
60	10			- (DN: heaving around 15.0 ft every pull up)	50	0													
50) 1 2 2 3 3 3		SANDY GRAVEL (GW): dark gray, saturated, 0.25-in to 1.0-i subrounded to subangular gravel, medium sand, with trace of white clasts (sand and gravel)	n of														
				GRAVELLY SAND (SW): dark gray, wet, 0.25-in to 0.5-in, medium to coarse gravel, trace of red to trace of white sand and gravel	55	.0													
50 60	12	2		SANDY GRAVEL (GW): light gray to dark gray, saturated, 0.25-in to 1.0-in, subangular to subrounded gravel, with few white clasts, medium to coarse sand, with few white clasts	60	.0											¥		
	13	3		GRAVELLY SAND (SW): dark gray, saturated, fine to coarse sand, with few coarse, white sand, with few coarse white sand, gravel 0.5-in to 1-in, with silt traces, at 70.0 ft	65	.0											•		
40 70	14	1		SAND (SW): dark gray, saturated, fine to medium sand, with few coarse white sand, few gravel and silt traces	70	.0											¥		
	15	5		SAND (SP): dark gray, saturated, with few coarse sand and gravel	75	.0													
30 80	··· ··· 16	;		$_\sim$ - medium sand, trace of fine sand below 80.0 ft	80	.7											*		
	17	, 💥		LEAN CLAY (CL): hard, dark gray, damp, with few fine and medium sand													•		
20				- (DN: back into gravel with water at 86.5 ft)															
90	18	3		- (DN: back into clay at 89.0 ft) GRAVELLY SAND (SP): dark gray, saturated, fine sand, subrounded gravel to 91.0 ft to 1.0-in	90	.0													
	19			CLAYEY SAND (SC): dark gray, damp, fine sand, with few si	95 It	.0													
10 100	20																		$ \rightarrow$
	21			SILTY SAND (SM): dark gray, fine sand	105	.0											+		

-0	- . . - . . - . .	22										
										Ĭ		
-		23	- minor lignite below 115.0 ft							•		
- 10	20	24		120.0								
-			SAND (SP): dark gray, wet, fine, with few silt							Ĭ		
-		25								♥		

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DEPTH: 150 ft

COMPLETION DEPTH: 150 ft COORDINATES: LONG: -151.34460741 LAT: 60.66382579 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 109.09 ft (NAVD88) EXPLORATION START DATE: 7/16/2016 COMPLETION DATE: 7/19/2016 LOGGED BY: D. Sadoff ALASKALING F **BORING LOG OW-2 ONSHOTE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 5a

	SAMPLER BLOWS/FT		STRATUM DEPTH, FT	% PASSING #200 SIEVE	pcf 1	DRY U	EIGHT	SF 10	PT N _{field} -VA	LUE 30 40)	PHOT	FOIONIZATION ECTOR (PID) READINGS
MATERIAL SYMBOL SAMPLE NO.	SAMPLER BLOWS/F1	MATERIAL DESCRIPTION	STRA DEPT	% PA #200 {					1	STRENGT			40 60 80
		SAND (SP): dark gray, wet, fine, with few silt		5 <u>F</u>							,	P	
27		- few lignite at 135.0 ft - (DN: back into clay at 135.0 ft) - saturated below 135.0 ft										¥	
28		CLAYEY SILT (ML/CL): dark gray, saturated - very dense, 141.0 ft to 150.0 ft	140.0									¥	
30		CLAY (CL): very stiff, dark gray	145.0										
		DN: the lower 9.1 ft backfilled with bentonite chips.											

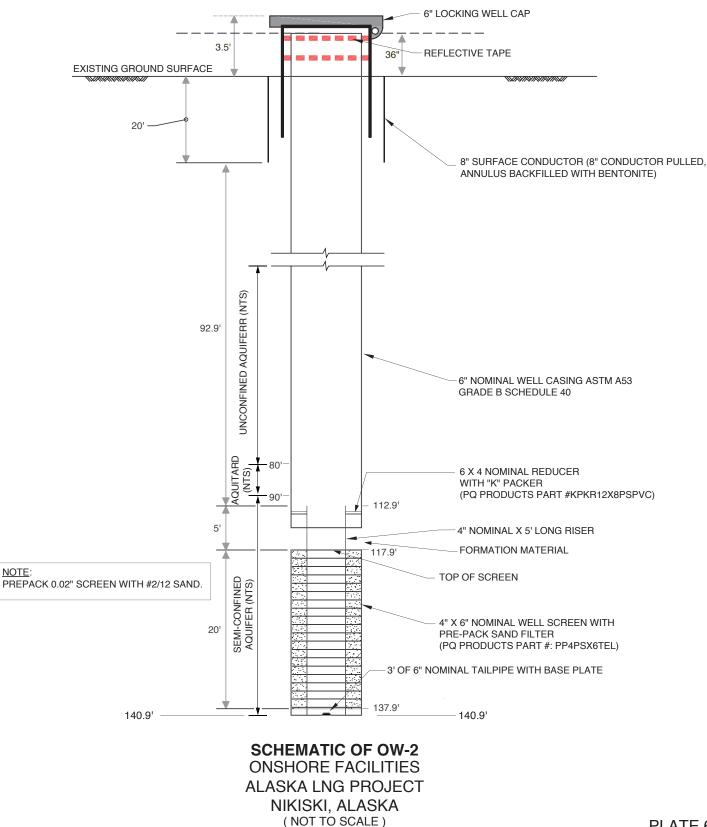
NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DEPTH: 150 ft

COMPLETION DEPTH: 150 ft COORDINATES: LONG: -151.34460741 LAT: 60.66382579 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 109.09 ft (NAVD88) EXPLORATION START DATE: 7/16/2016 COMPLETION DATE: 7/19/2016 LOGGED BY: D. Sadoff ONSHORE LNG **BORING LOG OW-2 ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 5b

Alaska LNG Project Report No. 04.10160001-4


DRILLER: MW Drilling				PROJECT:	04.10160001
DRILL RIG: Ingersol Rand T2W	COORDINATES (NAD83)	ELEVATION (ft, NA	VD88)	LOCATION:	Nikiski, Alaska
METHOD: Air rotary	60.66382579 Lat.	GROUND SURFACE:	106.09	DATE STARTED:	7/16/2016
LOGGER: DS	-151.34460741 Lon.	CASING (TOP):	109.09	DATE COMPLETED:	7/20/2016

Confidential

LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report

USAL-FG-GRZZZ-00-002016-002 Rev. 0

2-Dec-16

ELEVATION, FT DEPTH, FT	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE		53	5 60			20		PHOT DET R	OIONIZ ECTOR EADINO	ation (Pid) 38
	₩XS		SA	В	TOPSOIL: soft, with grassy roots, wood, and loose sand	ES E	#3	% 2	0 4		ksf	1.0	2.0		ppm 20	40 60	80
- - 120 -				-	GRAVEL (GW): olive gray, subrounded to subangular gravel, 0.25-in to 1.0-in, with sand, fine to coarse	3.0									 *		
- 10 - -		2 3		-	SANDY GRAVEL (GW): damp, subrounded to 0.75-in, light to olive gray, with medium sand	_ 10.0									 *		
110 - 20- -		4			- with few sand at 20.0 ft - with medium to coarse sand below 20.0 ft										 ¥		
- 100 - 30 -		5 6		-	GRAVEL (GW): olive gray, damp, subrounded to 1.25-in, traces of silt, with few medium and coarse sand	25.0											
-		7	\otimes	¥	 GRAVELLY SAND (SW): olive gray, damp, fine to medium sand, many subrounded gravel, 0.25-in to 1.0-in, trace brown and white clasts at 35.0 ft few white clasts, increasing moisture below 35.0 ft 										₩		
90 - 40 - -		8		-	GRAVEL (GW): dark gray, wet, 0.25-in to 1.25-in, subrounded gravel, few brown clasts, with medium sand, and few silt at 45.0 ft	40.0										+	
- 30 - 50 -		10		-	- few white clasts below 45.0 ft SAND (SP): dark gray, saturated, fine sand, with few white clasts	50.0									 ¥ 		
		11			- medium to coarse sand, 55.0 ft to 60.0 ft										₩		
60 - - -		12 13			- with subrounded, dark gray and white gravel to 1-in at 60.0 ft - with medium sand below 60.0 ft										 *		
- 60 - 70 -		14		-	CLAY (CL): stiff, olive gray to dark gray, moist, traces silt andfine sand	68.0 70.0				 				 			
- - 50 - 80 -																	
-																	
40 - 90 - -																+	
- 30 - 100 -																+	
- 20 -																	
- 110 - - -																	

 NOTES:

 1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.

 2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.

 3) DN = Driller's Note

 4) ♥ = PID (ppm)

 5) ¥ = Initial water level adring drilling

 6) ¥ = Static water level after drilling

 COMPLETION DEETH:
 67 ft

COMPLETION DEPTH: 67 ft COORDINATES: LONG: -151.34191656 LAT: 60.66235654 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 128.26 ft (NAVD88) EXPLORATION START DATE: 7/29/2016 COMPLETION DATE: 7/30/2016 LOGGED BY: D. Sadoff AL ASKALNO **BORING LOG OW-3 ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 7

Alaska LNG Project Report No. 04.10160001-4

DRILLER: MW Drilling PROJECT: 04.10160001 DRILL RIG: Ingersol Rand T2W COORDINATES (NAD83) ELEVATION (ft, NAVD88) LOCATION: Nikiski, Alaska METHOD: Air rotary 60.66235654 Lat. GROUND SURFACE: 125.26 DATE STARTED: 7/29/2016 DATE COMPLETED: LOGGER: DS -151.34191656 Lon. CASING (TOP): 128.26 7/30/2016

Confidential

LNG Facilities Aquifer Pump Test Well and

Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0

2-Dec-16

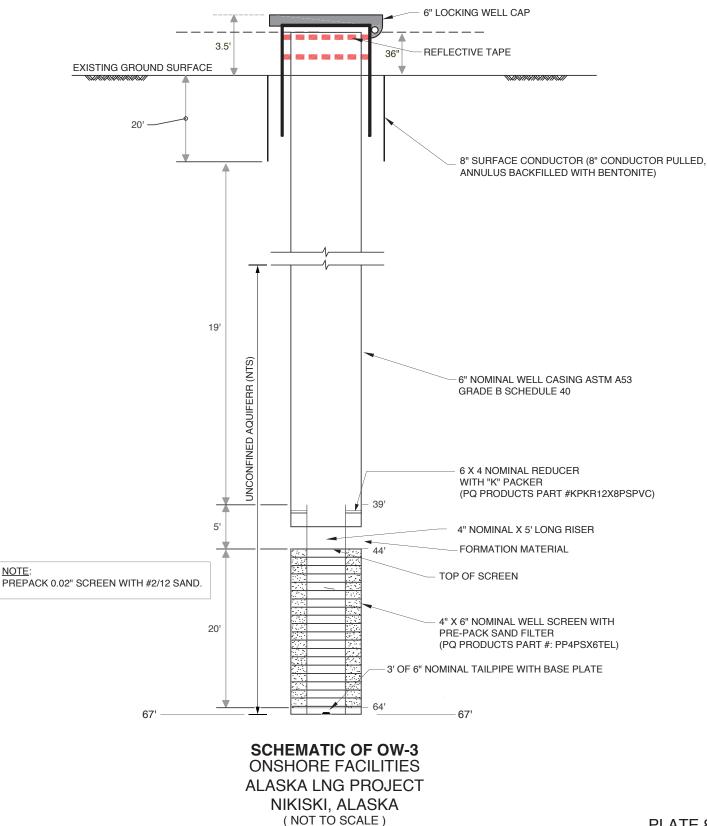


PLATE 8

Report No	04.1	0160	0001-4	LNG Fac Groundwate USAL-F	er Obse	ervat ZZZ-	ion W	ell Ins)2016-	tallatio	n Rep				Α	ask	a LN	IG	fug
「「」」「ELEVATION, FT DEPTH, FT ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●				MATERIAL DESCRIPTION TOPSOIL: soft, with loose sand, roots and wood SANDY GRAVEL (GW): olive gray, moist, 0.75-in, subround gravel, fine to coarse sand		DEPTH, FT	% PASSING #200 SIEVE		15 : INC	30 DEX TE	VEIGHT 45 6 ESTS 60 6	ю	ksf		ED SHEAF	ALUE 30 40 2 STRENGTH 3.0 4.0	1	PHOTOIONIZA DETECTOR (F READINGS
- 120 - 10 - • • •		2		- subrounded gravel to 1-in, light gray to olive gray, damp, fir sand, 10.0 ft to 20.0 ft	ne													
- 110		2 2 3 3 4 4 7 7 7 8 8		 with few white clasts at 20.0 ft olive gray to dark gray, 0.25-in to 1-in, subangular to subrounded gravel, fine to medium sand, few brown gravel clasts below 20.0 ft GRAVELLY SAND (SW): olive gray, damp, fine to medium, 0.5-in to 1-in, subrounded gravel 		25.0												
		7		⊈ - wet, with few white clasts below 35.0 ft														
		9		GRAVEL (GW): dark gray, wet, 0.25-in to 1-in, subrounded gravel, with medium sand to 05-in, few silt, with few white sand, and gravel clasts		45.0 50.0												
		1		SAND (SP): olive gray to dark gray, saturated, fine sand, wit few white clasts to 55.0 ft													v	
- 70		12		- dark gray, medium to coarse,subangular to subrounded sa 55.0 ft to 60.0 ft	ind,												¥	
_ 60 -				- with white clasts, and traces 0.25-in gravel, at 60.0 ft - few white clasts below 60.0 ft														
-60		3		CLAY (CL): stiff, olive gray to dark gray, moist, traces of silt, and traces of fine sand	,	65.0												
- 70	<u>//</u> 1	4		SAND (SP): wet, fine sand, with traces of silt and clay		70.0												
-50	1	15		CLAY (CL): olive gray to dark gray, wet, few silt and fine san	nd	75.0												
- 80	1	16 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		GRAVEL (GW): dark gray, wet, subangular to subrounded gravel, with white, brown and greenish gray clasts, 0.25-in 2-in	to	80.0												
40 90	1	18		- (DN: Clay at 86.0 ft) CLAY (CL): stiff, olive gray to dark gray, damp		90.0												
	1	19		SILT (ML): olive gray, saturated		95.0												
- 30	2	20				100.0												
	2	21		SAND (SP): dark gray, saturated, fine sand, trace silt														
-20 -	2	10 11 12 13 13 14 15 16 16 16 17 17 18 19 20 21		- with few lignite at 105.0 ft														
	2			SAND (SW): dark gray, fine to medium sand, with traces of white clasts		115.0												
_ 120 -	2	23 24 25																
	2	25		SAND (SP): olive gray to dark gray, wet, fine sand, with trace of white clasts, and traces of silt	es	125.0												

 NOTES:

 1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.

 2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.

 3) DN = Driller's Note

 4) ♥ = PID (ppm)

 5) ¥ = Initial water level during drilling

 6) ¥ = Static water level after drilling

 COMPLETION DEPTH: 137.6 ft

 o) = - Static water level after uning

 COMPLETION DEPTH: 137.6 ft

 COORDINATES: LONG: -151.34194479 LAT: 60.66238108 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees)

 SURFACE ELEVATION: 128.29 ft (NAVD88)

 EXPLORATION START DATE: 7/26/2016

 COMPLETION DATE: 7/28/2016

 LOGGED BY: D. Sadoff

 BORING LOG OW-4 ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

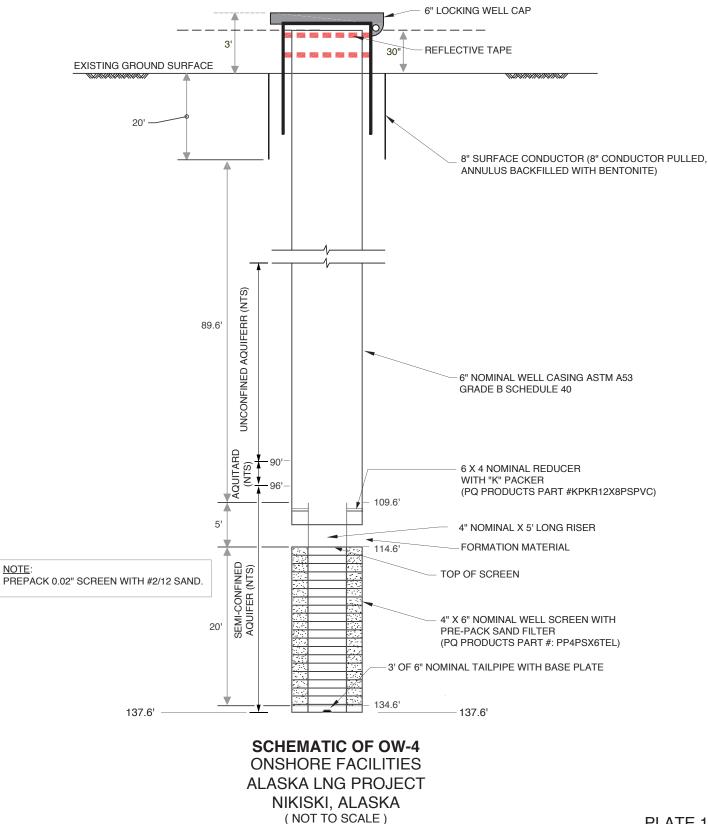
PLATE 9a

ELEVATION, FT 30 DEPTH, FT MATERIAL						2-De SNIS		DRY L	INIT W	EIGHT 5 ஷ		SF 0 2	PT N _{field} -VA		40	РН	OTOIC ETECT REAL		
0 ELEVATION 130 05 05 05 05 05 05 05 05 05 0	8 SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION SAND (SP): olive gray to dark gray, wet, fine sand, with traces of white clasts, and traces of silt	STRATUM DEPTH, FT	% PAS #200 SI	90 pcf 1		0 4 EX TES 0 6		u	NDRAINE		STRENG	L				
	27			CLAY (CL): stiff, olive gray to dark gray, wet	135.0														
10 10 140	28	8			137.0						 								
-20 -																		_	_
-30 - . 160 -																			+
-40 -																			
170 -																			
50																			
. 180 - 																			
60 - 190 -																			
-70 - 200 -																			
80 - 210 -																		_	+
-90 - 220 -																			+
230 - 																		_	+
110 -																			
. 240 -																			+
-120																			

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DEPTH: 137.6 ft

COMPLETION DEPTH: 137.6 ft COORDINATES: LONG: -151.34194479 LAT: 60.66238108 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 128.29 ft (NAVD88) EXPLORATION START DATE: 7/26/2016 COMPLETION DATE: 7/28/2016 LOGGED BY: D. Sadoff ALAKSALNC D **BORING LOG OW-4 ONSHORE LNG FACILITIES** ALAKSA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary


PLATE 9b

Alaska LNG Project Report No. 04.10160001-4 LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16

Confidential

DRILLER: MW Drilling				PROJECT:	04.10160001
DRILL RIG: Ingersol Rand T2W	COORDINATES (NAD83)	ELEVATION (ft, N	AVD88)	LOCATION:	Nikiski, Alaska
METHOD: Air rotary	60.66238108 Lat.	GROUND SURFACE:	125.79	DATE STARTED:	7/26/2016
LOGGER: DS	-151.34194479 Lon.	CASING (TOP):	128.29	DATE COMPLETED:	7/28/2016

eport	No. 04	4.101	6000)1-4	LNG Facili Groundwater USAL-FG	Observ -GRZZ	ation \	Well In 002016	stallatio	on Re	port			A	ask	a LN	۱G.	4		
ELEVATION, FT	DEPTH, FT MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE		DRY U 15 30 INDE 20 40		5 60	<u>,</u>	1 U ksf 1.		D SHEAR	LUE 30 40 STRENGTH .0 4.0		DET F	OIONIZ ECTOR EADINO 40 60	R (PID GS
	<u> </u>				TOPSOIL: brown, moist, with minor organics and silt		0 1	70				5	KSI 1.	<u>, 2</u>		4.0			40 00	
• 110		1			GRAVEL WITH SAND (GP): subrounded to round, with clasts up to 1.5-in, medium to fine sands	5.0														
100	20	3			SAND WITH GRAVEL (SP): fine grained with traces silt, few subrounded clasts, fine sand 60-70%, medium sand 20-30%, 10-20% fine to coarse gravel	15.0														
- 90		5			SAND WITH GRAVEL (SW): moist, fine, 25-30% subrounded to rounded gravel	25.0														
	30	6		2	SAND WITH GRAVEL (SP): olive gray to dark gray, moist, 5-10% subrounded to rounded gravel	30.0											*			
· 80 · · · ·	40				 - large lignite clasts 2.0-in long, 5% fine gravel, moist GRAVEL WITH SAND (GP): olive gray to dark gray, saturated, fine gravel to 1.0-in, traces of white clasts, fine to medium sand 	40.0														
60	50	10			SAND WITH GRAVEL (SW): saturated, fine to medium, subrounded clasts, with silt, lignite - more coarse sand, with trace white clasts, fine, rounded gravel	50.0											Ŷ			
50	60 -	12 13			- increase in silt, quartz clasts, subrounded to round, lignite, gravel clasts to 0.75-in - increase in gravel, 0.75-in max												•			
	70	14 15		<u>'</u>	- smaller gravel 0.5-in max	75.														
40	80	13			 SAND WITH SILT (SP-SM): dark gray, with trace gravel, 5-10% up to 0.5-in, increase in silt fine to medium sand, with trace gravel 0.25-in, rounded, saturated, dark gray 	75.0											•			
30		. 17			LEAN CLAY (CL): greenish gray to olive gray, saturated - (DN: add water to blow out clay)	83.0														
	90	18 19																		
20	00	20				103.0														
10		21			SAND (SP): dark gray to olive gray, fine grained sand, saturated, with silt and trace clay												*			
0		22			SILT (ML): dark gray with fine sands SAND (SP): sand with silts, dark gray, semi-saturated, clean	110.0														
	20 -	24			- (DN: blowout - lots of lignite when well flushed out at start of day)															
10		25															A			

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DEDTINE 425 #

COMPLETION DEPTH: 135 ft COORDINATES: LONG: -151.3470609 LAT: 60.66315390 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 117.09ft (NAVD88) EXPLORATION START DATE: 9/5/2016 COMPLETION DATE: 9/8/2016 LOGGED BY: K. Johnson **BORING LOG APT-1 ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 11a

Report No.	04.10160	001-4	LNG Fac Groundwate USAL-F	ilities Ac r Observ G-GRZZ	onfider juifer P /ation \ ZZ-00-(2-Dec-	ump T Vell In 002016	est We stallatio 3-002 F	ell and on Re Rev.0	d port		A	ask	a L	NG	тм	ſ	GRO
ELEVATION, FT DEPTH, FT MATERIAL SYMBOL	SAMPLE NO. SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE	pcf 1	DRY UI 5 30 INDE 10 40		5 60	ι	JNDRAINE	PT N _{field} -VA	STRENG	40 	DI	OTOION ETECTC READII	IIZATION DR (PID) NGS
-	26		SAND (SP): sand with silts, dark gray, semi-saturated, clean sand	130.0			40		0				4				
		-	SILT (ML): dark gray to olive gray	150.0													
20	26 27 28		- (DN: clay, sealing off air outlet, added water to clear out caking of clay on casing)	138.0						 					▼		
- 140 - 																	
30 -																	
- 150 <i>-</i> 										 							
40 - 40 -																	
- 160 -																	
50 -																	
- 170-																	
60 -																	
- 180 <i>-</i> 																	
70 - - 190 -																	
80 - - 200 -																	
90 - - 210 -																	
100 - - 220 -																	
110 - - 230 -																	
- 120 - 240 -										 							
 130 -																	
 - 250 -																	

 NOTES:

 1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.

 2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.

 3) DN = Driller's Note

 4) ♥ = PID (ppm)

 5) ¥ = Initial water level during drilling

 6) ¥ = Static water level after drilling

 6) W = COMPLETION DEDTURE 436 ft

COMPLETION DEPTH: 135 ft COORDINATES: LONG: -151.3470609 LAT: 60.66315390 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 117.09 ft (NAVD88) EXPLORATION START DATE: 9/5/2016 COMPLETION DATE: 9/8/2016 LOGGED BY: K. Johnson

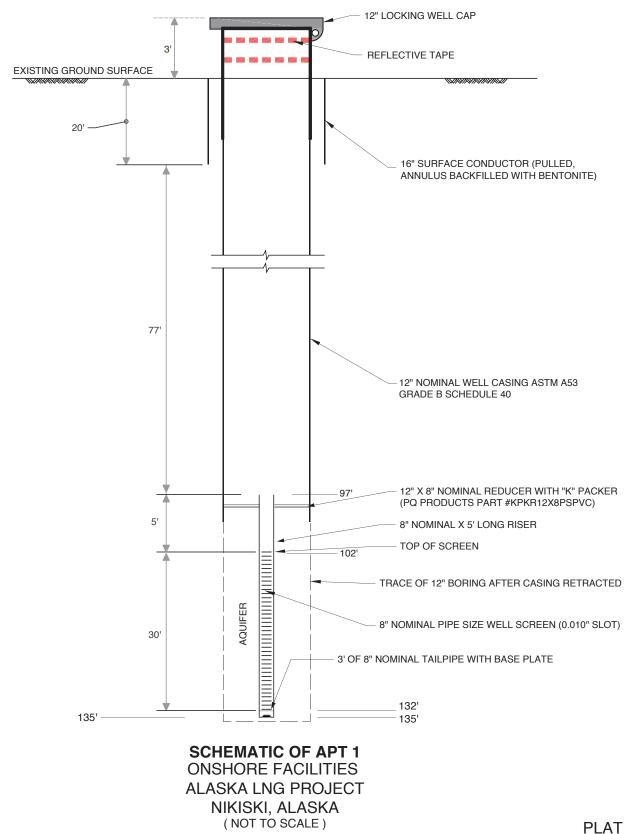
BORING LOG APT-1 ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 11b

oakpfclfs01/data/public08/jobdocs/04.10160001 Alaska 2016/Graphics/ 04_10160001_11-15_Logs_for_APT-1, 2, and 3.ai Tuesday, October 11 2016 14:28:03

Alaska LNG Project Report No. 04.10160001-4


DRILLER: MW Drilling PROJECT: 04.10160001 COORDINATES (NAD83) DRILL RIG: Ingersol Rand T2W ELEVATION (ft, NAVD88) LOCATION: Nikiski, Alaska METHOD: Air rotary 60.66315390 Lat GROUND SURFACE: 114.09 DATE STARTED: 9/5/16 DATE COMPLETED: 9/12/16 LOGGER: DS -151.3470609 Lon. CASING (TOP) 117.09

Confidential

LNG Facilities Aquifer Pump Test Well and

Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0

2-Dec-16

	rt No. 04	4.101	6000	1-4	LNG Faciliti Groundwater C USAL-FG-	es Aquil Ibservat GRZZZ-	on We	mp Tes ell Insta 2016-0	llation	Repo	ort		 Α	aska	a LN	IG .		UGR
ELEVATION, FT	DEPTH, FT MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE	pcf		0 4	5 6()	10	1		н	PHOT DETE RE	DIONIZATIO CTOR (PIE EADINGS
<u> </u>	ο Σ ο ÷÷÷	ß	s S	ш	TOPSOIL: wood particles, soft, with loose sand	<u>b</u>	8#	% 2)			4.0		pm 20	40 60 80
- - 120 - -	10-8	1 2		-	 SAND AND GRAVEL (SW): olive gray, moist, fine to coarse sand, with few white clasts, fine, subangular to subrounded gravel, fine to 1.5-in olive gray, subrounded, moist - increasing gravel content and many sand 	5.0												
- - 110 - -	20-	3														*		
- - 100 - -	30 -	5														*		
- 90	40	7 8		Ţ	SAND (SW): olive gray to dark gray, fine to medium, with few white clasts, few gravel, subrounded	35.0										¥		
80		9			 increasing gravel content, wet with little coarse sand 											¥		
	50 -	10			- becoming dark gray only													
70		11 12			- (DN: heaving sands)											¥		
60		13			 fine to coarse sand, olive to dark gray, saturated, with gravel, subrounded, fine to 1.25-in, dark gray, with white clasts fewer white clasts 											¥		
	70-	14				73.0												
50	80	15 16			LEAN CLAY (CL): medium stiff, olive gray to dark gray, damp, with silt SAND (SW): gray to dark gray, saturated, fine to medium sand with trace coarse sand, with silt	00.0												
40		17			SILTY CLAY (CL-ML): olive gray to dark gray, with subangular gravel to 0.5-in - with many subrounded gravel to 1.25-in											*		
	90-00	18			- with fine sand													
30		19 20		-	SILT (ML): olive gray to dark gray, with trace clay	95.0												
20		21			- wet, with few clay and few fine sand											¥		

ŀ		22		110.0							
-			SAND (SP): dark gray, wet, fine with medium sand and trace coarse sand, with few subrounded gravel to 0.75-in, few silt							ľ	
-	 		- increasing silt , with few subrounded gravel to 2-in and few							*	
ľ			lignite								
ŀ	120	24	- (DN: better water at 119.0 ft)							*	 +-
-											
-(0	25	 olive gray to dark gray, saturated, fine, with trace subrounded gravel to 0.25-in and silt 							*	

NOTES:

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ▼ = PID (ppm)
5) ¥ = Initial water level after drilling
6) ¥ = Static water level after drilling

COMPLETION DEPTH: 138.5 ft COORDINATES: LONG: -151.3419546 LAT: 60.66107404 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 126.99ft (NAVD88) EXPLORATION START DATE: 9/15/2016 COMPLETION DATE: 9/20/2016 LOGGED BY: D. Sadoff **BORING LOG APT-2 ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 13a

oakpfclfs01/data/public08/jobdocs/04.10160001 Alaska 2016/Graphics/ 04_10160001_11-15_Logs_for_APT-1, 2, and 3.ai Tuesday, October 11 2016 14:28:03

eport No.	04.10′	16000	01-4	LNG Facilitie Groundwater O USAL-FG-0	bservati GRZZZ-(on We	ll Insta	llation	Repo	rt		Δ	ask	a L	NG	тм	
ELEVATION, FT DEPTH, FT MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE	pcf		NIT WI ⁰ 4 EX TES ⁰ 6	5 60	U	INDRAINE	T N _{field} -VA	STRENG	40 		NIZATIO OR (PIE)INGS
130	26			SAND (SP): dark gray, wet, fine with medium sand and trace coarse sand, with few subrounded gravel to 0.75-in, few silt		0,45	%		0 6	0 80	 ksf 1.	0 2.	0 3		.0	ppm 2	60 80
-10	27 28			LEAN CLAY (CL): stiff, olive gray to dark gray, wet HYDRO NOTE: toed 0.5 ft into clay separating water bearing units 2 and 3; ceased boring advancement to preclude puncturing into unit 3.	136.5 138.5	;					 					▼ 	
- 20 - 150 - -											 						
30 - - 160 - - -																	
40 - - 170 - - -																	
50 - - 180 - - -																	
60 - - 190 - - -																	
70																	
210-																	
90 - - 220 - - -																	
100 - - 230 - - -																	
110 - - 240 - - -																	
-120 - - 250 - -																	

NOTES:

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ▼ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
C) ¥ = Counter Static water level after drilling

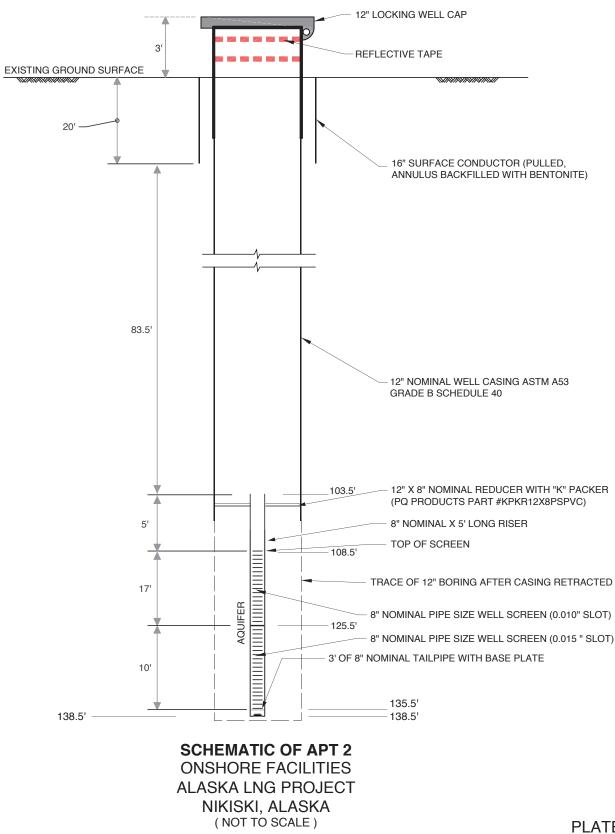
COMPLETION DEPTH: 138.5 ft COORDINATES: LONG: -151.3419546 LAT: 60.66107404 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 126.99 ft (NAVD88) EXPLORATION START DATE: 9/15/2016 COMPLETION DATE: 9/20/2016 LOGGED BY: D. Sadoff AL A SKA L NC

BORING LOG APT-2 ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 13b

Alaska LNG Project Report No. 04.10160001-4


DRILLER: MW Drilling				PROJECT:	04.10160001
DRILL RIG: Ingersol Rand T2W	COORDINATES (NAD83)	ELEVATION (ft, N/	AVD88)	LOCATION:	Nikiski, Alaska
METHOD: Air rotary	60.66107404 Lat.	GROUND SURFACE:	123.99	DATE STARTED:	9/15/16
LOGGER: DS	-151.3419546 Lon.	CASING (TOP):	126.99	DATE COMPLETED:	9/19/16

Confidential

LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report

USAL-FG-GRZZZ-00-002016-002 Rev. 0

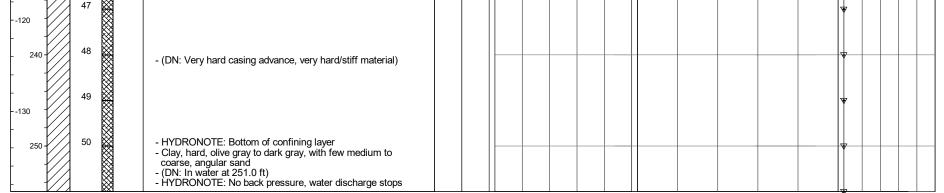
2-Dec-16

Repor	t No.	04.10)160(001-4	Groundwat	cilities Ad er Obser FG-GRZZ	ation /	Pump T Well In 002016	stallati	ion Re	eport		A	ask	a LN	۱G.		UG	
ELEVATION, FT	DEPTH, FT MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH. FT	% PASSING #200 SIEVE	pcf	DRY U		/EIGHT	- 60	SF 10 :	PT N _{field} -VA	LUE 30 40		DETE	DIONIZA CTOR (ADING	(PID
	T NAT	SAN	SAN SAN	BLC	TOPSOIL: with organic debris	STR	% P/ #200	%	20 INE		STS	BO			STRENGTH			40 60	
110 1(2			SILTY CLAY (CL-ML): gray, with gravel SANDY GRAVEL (GP): dark gray, with white clast, medium sand, subrounded to 0.75-in - DN: Started encountering cobbles, 7.0 ft to 8.0 ft with grave (based on drill rod bouncing off bottom) only fragments observed in discharge material	3. 5.													
100		3			- gravel to 1.25-in											¥			
20) - -	4			- DN: Conductor installed														
0		5			SAND (SP): olive to dark gray, wet, fine grained, with traces silt, subangular gravel and few lignite	25. of	0												
30		6		7	- wet, increasing gravel content	35.	0												
0		8		1	SAND (SW): olive to dark gray, wet, fine to medium grained sand, with few subangular gravel to 1.0-in	35.													
4(9			- with few white clast, subangular to subrounded gravel	45.	0												
0 5(10			SANDY GRAVEL (GP): dark gray, subangular to subrounded gravel, with fine to medium sand and few white clasts, saturated	50	0												
0		11			SAND WITH GRAVEL (SW): dark gray, with fine to medium, subrounded gravel to 1.0-in, with few white clasts, trace silt saturated - less gravel											¥			
	- - 	12			- fine to coarse sand, with gravel to 0.75-in, dark gray with white clast, saturated														
D		13			- with trace silt											¥			
7(14																	
D		15			- SAND (SP): dark gray, fine grained, with silt, trace subround gravel to 0.5-in, few lignite, saturated		0												_
80		16			- fine grained, dark gray, with trace 0.25-in gravel, saturated														
)		17			CLAY (CL): stiff, olive gray to dark gray, moist	84.	U									*			
9(18																	_
)		19 20														¥			
100		20			SAND (SP): olive gray to dark gray, wet, fine grained, with sil	103.	0												

- 11	0	22			110.0								
				SILT (ML): dark gray, with fine sand and few clay, saturated							Ĭ		
-0		23	×	- with few lignite and trace subrounded gravel to 0.5-in							•		
-	-	24											
- 12	0 - - 0.	24		- increasing lignite content, clasts to 1.25-in, saturated					 		*	-	\square
-		25	×		125.0								
10				SAND (SP): olive gray to dark gray, fine, with silt, saturated							Ĭ		

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DEDTINE 427 €

COMPLETION DEPTH: 437 ft COORDINATES: LONG: -151.3469876 LAT: 60.66312928 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 115.83ft (NAVD88) EXPLORATION START DATE: 8/1/2016 COMPLETION DATE: 8/24/2016 LOGGED BY: D. Sadoff ALASKALNIC


BORING LOG APT-3 ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

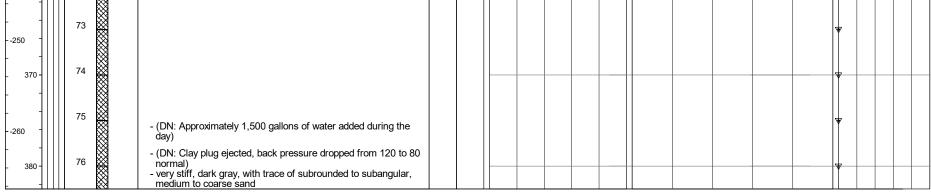
DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 15a

oakpfclfs01/data/public08/jobdocs/04.10160001 Alaska 2016/Graphics/ 04_10160001_11-15_Logs_for_APT-1, 2, and 3.ai Tuesday, October 11 2016 14:28:03

Report No.	. 04.2	1016	0001	-4	LNG Fac Groundwate USAL-F	ilities Ad r Obser G-GRZZ	ation/	Pump T Well In 002016	stallati	on Re	port		[Α	lask	a L	NG	ты	Fu	GRI
ELEVATION, FT DEPTH, FT MATERIAL SVMDOU	SYMBOL SAMPLE NO	SAMDLED		BLOWS/FI	MATERIAL DESCRIPTION	STRATUM DEPTH. FT	% PASSING #200 SIEVE	pcf	I5 3 IND	ρ <u>4</u> EX TES	STS	ρ	ι	INDRAINI	ED SHEAR			DET		GS
					SAND (SP): olive gray to dark gray, fine, with silt, saturated	130.		1%	4	0 6	0 8	U	кя 1	.0 ::	2.0 3	<u> </u>	.0	ppm 20	40 60	<u>ν 80</u>
130		6 AXXXXXX			SILTY SAND (SM): dark gray, fine sand, saturated	130.														
-20	·. ·. 2		~	-	SILT (ML): dark gray, saturated - (DN: Does not appear to be good water producer)	135.	0											*		
140 -	2				- (DN: Sand heaved 20.0 ft overnight) - HYDRONOTE: Top of confining layer - Clayey Silt, olive gray to dark gray, saturated													*		
-30 -	2																	*		
-40 -	3				- (DN: clay, 152.0 ft to 155.0 ft based on drilling pressure)													•		
160	3				CLAY (CL): very stiff, olive gray to dark gray, wet - (DN: Nothing out blow hole, 160.0 ft to 165.0 ft = Clay Zone) - (DN: Back into water zone at 165.0 ft)	160.	0													
	3	3	X		- (DN: Back into water zone at 165.0 ft) CLAYEY SILT (ML/CL): olive gray to dark gray, saturated	165.	0												+	
-50					OF THE TOTEL (INFORT). UNVE GLAY TO DAIN GLAY, SATURATED															
170-	3				 (DN: Appears small interbeded 1.0 ft Clay/Silt based on hammer resistance) with large 3.0-in pieces very stiff clay 													*		
-60 -	3				- clay becoming hard, with few small black specs (lignite?)													▼		
180	3		8		SILT (ML): olive gray to dark gray, with fine sand and few subangular gravel to 2.0-in and few black specs (lignite?)	180.	0													
-70 -	3				- (DN: Heaved 20.0 ft overnight) - no gravel, wet with trace clay													▼		
190 -	3		3															*		
-80 -	3																	*		
200 -	4																			
-90 -	4	1			- (DN: Increased hammer resistance) - with few clay, saturated													▼		
210 -	4	1 2 3 3 4 4			- (DN: adding water downhole)															
-100 -	4	3			CLAYEY SILT (ML/CL): olive gray to dark gray	215.	0													
220	4	4			- increasing clay content SILTY CLAY (CL-ML): olive gray to dark gray	220.	0													
-110	4	5			CLAY (CL): very stiff, olive gray to dark gray, (based on hammer resistance)	225.	0													
230	4																			

NOTES:


NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ▼ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
Control Tool DEDTU: 407 €

COMPLETION DEPTH: 437 ft COORPLETION DEPTH: 437 ft COORDINATES: LONG: -151.3469876 LAT: 60.66312928 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 115.83ft (NAVD88) EXPLORATION START DATE: 8/1/2016 COMPLETION DATE: 8/24/2016 LOGGED BY: D. Sadoff **BORING LOG APT-3 ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 15b

Report	No.	04.10 ⁻	1600	01-4	LNG Faciliti Groundwater C USAL-FG-	ies Aqu)bserva GRZZZ	ation V	ump To Vell Ins 02016	tallatio	on Repo	ort	Α	ask	a LN	G.,	fug
ELEVATION, FT DEPTH ET	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE		5 3 IND	NIT WEI 0 45 EX TEST 0 60	60		i	STRENGTH	D	OTOIONIZATIO ETECTOR (PIE READINGS 20 40 60 80
		51 52			 CLAY (CL): very stiff, olive gray to dark gray, (based on hammer resistance) (DN: In good water at 258.0 ft) increasing sand content, subangular to subrounded 											
-150		53		-	SAND (SP): dense to very dense, dark gray, wet, fine sand, with few lignite to 4.0-in and flat pieces	265.0										
270		54			- (DN: Sand heaved overnight above bit, required 300 CFM to dislodge and blow material and water out of casing)											
-160		55			 no lignite Blow count, 270.0 ft to 271.0 ft , 350 blows, hammer delivers 5800 foot pounds. Took approximately 10 mins for 1.0 ft (very hard drilling/hammering to 275.0 ft) 										¥	
280		56			- with coarse sand and gravel, subrounded, dark gray clast, with silty clay, dark gray, very stiff											
170	 - -	57		-	SILT (ML): very stiff, dark gray, very little to no water	285.0										
290	-	58			- with few lignite											
180	-	59			- with olive gray to dark gray, subanglular to subrounded gravel, 0.25-in to 0.5-in										¥	
300	-	60			- (DN: heaved 20.0 ft overnight)											
190	-	61			- no gravel										¥	
310	-	62														
200	-	63			- (DN: Slightly easier drilling)										¥	
320	-	64			- (DN: back into very hard, slow drilling) - very stiff, dark gray, very little to no water											
210	-	65													¥	
330		66														
220	-	67													×	
340		68														
230		69													W	
350		70			- (DN: Easier drilling)											
240		71			- few gravel, subangular to subrounded to 0.25-in										V	
360	- -	72			- very stiff, dark gray, very little to no water											

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DESTING 407.6

COMPLETION DEPTH: 437 ft COORDINATES: LONG: -151.3469876 LAT: 60.66312928 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 115.83ft (NAVD88) EXPLORATION START DATE: 8/1/2016 COMPLETION DATE: 8/24/2016 LOGGED BY: D. Sadoff

BORING LOG APT-3 ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 15c

Report No. 04	.1016000)1-4	LNG Facilit Groundwater C USAL-FG-	ies Aqı Dbserva GRZZ	ation V	ump To Vell Ins 02016	tallation Re	eport		Alas	ka LN	G,	TUGR
ELEVATION, FT DEPTH, FT MATERIAL SYMBOL	SAMPLE NO. SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM DEPTH, FT	% PASSING #200 SIEVE		DRY UNIT V 5 30 INDEX TE 0 40	45 60		SPT N _{field}	AR STRENGTH)TOIONIZATIO TECTOR (PID) READINGS
270 - 270 -			 very stiff silt, started showing trace to few medium to coarse grained sand SILT (ML): very stiff, dark gray, very little to no water increasing clay content (DN: little to no materials return, clay plug discharged) CLAY (CL): hard, dark gray, with silt (DN: little to no materials return, added 1,500 gallons of water downhole) 	200 (% :		80 80	ksf ·		3.0 4.0	ppm 20	
400-290 410-	 777 78 79 80 81 82 83 		- (DN: Better materials discharge, major clay ejection at 408.0 ft and little to no formation water)									*	
300 420 310 430	84		- with trace silt										
	87		HYDRO NOTE: Downhole casing cutter utilized to sever casing at 288.0 ft to enable well construction. Lower casing between 288.0 ft and 437.0 ft backfilled with bentonite and abandoned in place.	437.0									
450 - - -340 - - 460 - - - - - - - - -													
470 - - -360 - - 480 -													
490 - - -													
- -380 - - 500 - - - 													

COMPLETION DEPTH: 437 ft COORDINATES: LONG: -151.3469876 LAT: 60.66312928 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 115.83ft (NAVD88) EXPLORATION START DATE: 8/1/2016 COMPLETION DATE: 8/24/2016 LOGGED BY: D. Sadoff ALASKALNIC **BORING LOG APT-3** ONSHORE LNG FACILITIES ALASKA LNG PROJECT NIKISKI, ALASKA

DRILLING COMPANY: M-W DRILLER: K. Westberg DRILLING RIG: Truck (T2W) DRILLING METHOD: Air Rotary

PLATE 15d

oakpfclfs01/data/public08/jobdocs/04.10160001 Alaska 2016/Graphics/ 04_10160001_11-15_Logs_for_APT-1, 2, and 3.ai Tuesday, October 11 2016 14:28:03

Alaska LNG Project Report No. 04.10160001-4

DRILLER: MW Drilling				PROJECT:	04.10160001
DRILL RIG: Ingersol Rand T2W	COORDINATES (NAD83)	ELEVATION (ft, N	AVD88)	LOCATION:	Nikiski, Alaska
METHOD: Air rotary	60.66312928 Lat.	GROUND SURFACE:	112.83	DATE STARTED:	8/1/16
LOGGER: DS	-151.3469876 Lon.	CASING (TOP):	115.83	DATE COMPLETED:	9/3/16

Confidential

LNG Facilities Aquifer Pump Test Well and

Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0

2-Dec-16

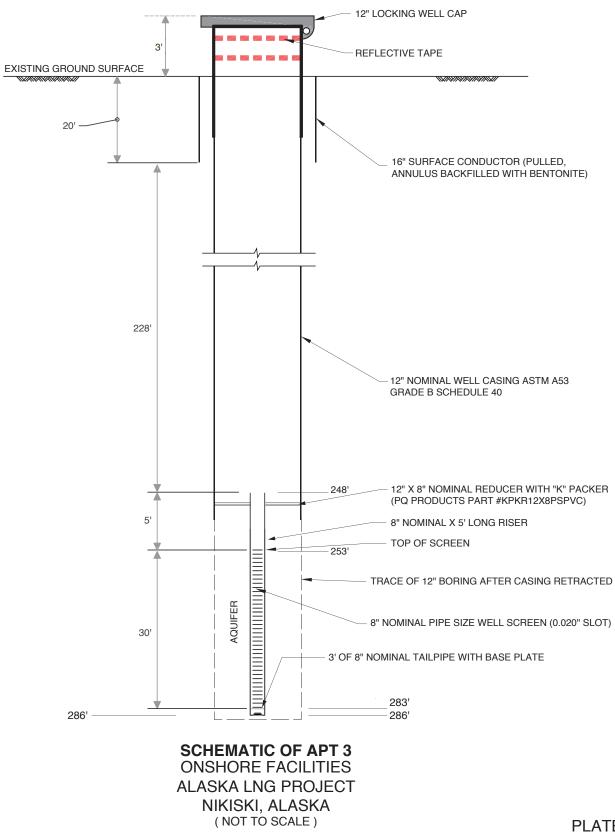
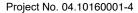


PLATE 16

	t No.	04.10	0160	001-4	LNG Faci Groundwater USAL-FC	r Obsei	rvatio	on W 0-00	/ell Ins)2016-	tallati	on Re	port		Α	ask	a Ll	NG	тн	UGR
	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER	BLOWS/FT	MATERIAL DESCRIPTION	STRATUM	9 PASSING	#200 SIEVE	pcf 1	5 3		EIGHT 5 60 STS 0 80	ksf		L ED SHEAR	30 4	гн	DETE	DIONIZATIO CTOR (PID EADINGS
20	-				- (Open drilling with no sampling was performed to 39.0 ft)														
10 10	-				- (DN: Drilling conditions of sand with gravel)														
20 00	-				- (DN: 200 gallons of water used by 25.0 ft)														
30 0	- - -	-				3	9.0												
40 0		S-1		92 10" 66	 SAND (SP): very dense, dark gray to olive gray, moist to wet, medium to coarse sand with few fine, subrounded to rounded gravel to 49.0 ft with few fine sand to 56.5 ft olive gray, 44.0 ft to 49.0 ft with lignite partings at 45.1 ft and 45.8 ft 												>>	♥	
50 D		S-3 S-4 S-5 S-6		89 86 11" - 63 59	 medium sand, with few coarse sand, with trace of fine, subangular gravel, 49.0 ft to 51.5 ft with trace of fine, subrounded gravel, 51.5 ft to 54.0 ft with trace of coarse, subrounded gravel, 54.0 ft to 56.5 ft with lignite, 55.3 ft to 56.0 ft with coarse, subrounded gravel, with few fine, subrounded gravel, 56.5 ft to 59.0 ft 												>>0	 	
60 0		S-7 S-8a S-8b S-9		50 5" 50 24	- dark gray below 59.0 ft - with fine to coarse, subrounded gravel below 61.5 ft SILTY CLAY WITH SAND (CL-ML): hard, dark gray, moist, fine sand, low plasticity LEAN CLAY (CL): very stiff, dark gray, moist, medium plasticity, laminated, with silt partings - with fine sand partings below 65.7 ft	6	2.9 4.0 6.0								0			♥ ♥ ₩ ₩	
70	-				<u>v - with fine sand partings below 65.7 ft</u>														
80 D	-)- -																		
90	-																		
0 100	- - -																		
0	-																		
110 0)- - - -																		
120	-																		

NOTES:
1) The log and data presented are a simplification of actual conditions encountered at the time of sampling at the exploration location. Subsurface conditions may differ at other locations and with the passage of time.
2) For additional symbol identification, refer to Key to Terms & Symbols Used on Logs.
3) DN = Driller's Note
4) ♥ = PID (ppm)
5) ¥ = Initial water level during drilling
6) ¥ = Static water level after drilling
COMPLETION DEPTH: 66 ft


COMPLETION DEPTH: 66 ft COORDINATES: LONG: -151.36456512 LAT: 60.6629957 (GCS, NAD 1983, NSRS2007, Alaska Zone 4, degrees) SURFACE ELEVATION: 124.73 ft (NAVD88) EXPLORATION START DATE: 8/9/2016 COMPLETION DATE: 8/11/2016 LOGGED BY: J. Soto DISCHORE LNG **BORING LOG MW-86BA ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

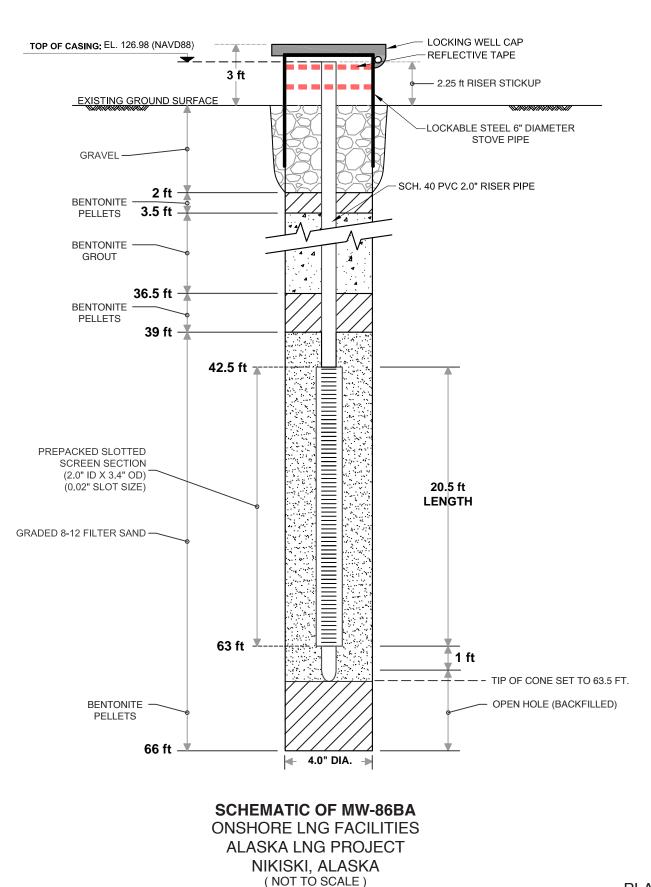
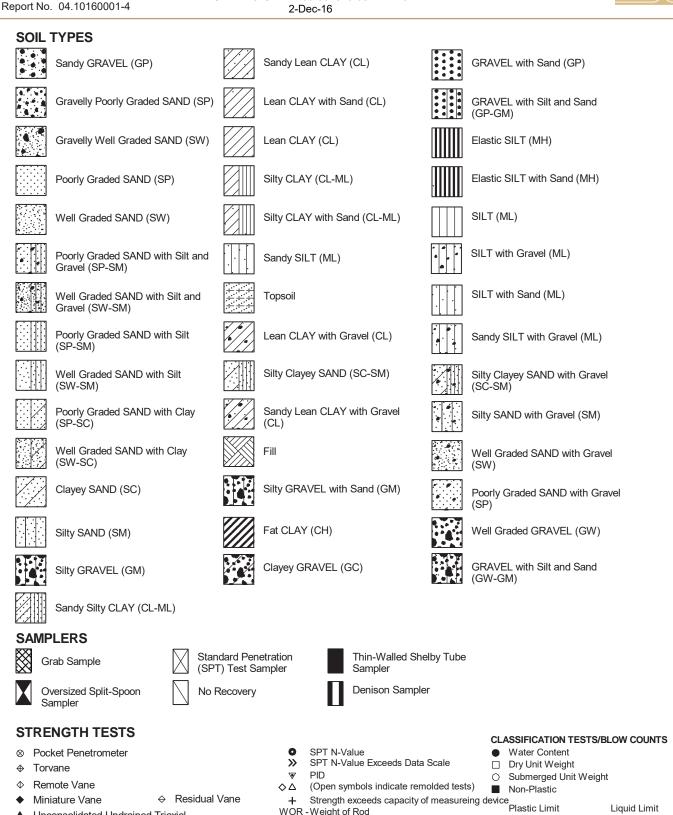

DRILLING COMPANY: Denali DRILLER: M. Kocian DRILLING RIG: CME-850X DRILLING METHOD: Wet Rotary

PLATE 17

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16


Alaska LNG,

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0

fugro Alaska LNG.

- Miniature Vane ♦ Residual Vane ٠
- Unconsolidated Undrained Triaxial
- Unconfined Compression (soil)
 - **KEY TO TERMS AND SYMBOLS USED ON BORING LOGS ONSHORE LNG FACILITIES** ALASKA LNG PROJECT NIKISKI, ALASKA

WOR - Weight of Rod

WOH - Weight of Hammer

+

PLATE 19

Liquid Limit

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16 Report No. 04.10160001-4

APPENDIX A METHOD STATEMENTS

	-fugeo	No:	Hydro-MS	S-02
METHOD STATEMENT		Page:	1 of 14	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Aquifer and Observation Well Installation	ons	Date:	July 2016	6

CONTENTS

- 1. Introduction
- 2. Main Activity/Area of Work
- 3. Manpower and Supervision
- 4. Associated Documents (Drawings, Manuals, Method Statements, Plans, Permits)
- 5. Hazard/Risk Assessments
- 6. Security Barriers/Fences/Warning Signs
- 7. Constraints/Restrictions/Special Considerations
- 8. Plant and Equipment
- 9. Materials (handling/storage/disposal)
- 10. Welding and Hot Work
- 11. Preparation of Works/Location of Services
- 12. Emergency Procedures
- 13. Personal Protective Equipment/Safety Equipment
- 14. Methodology & Sequence of Work
- 15. Appendices

Issue details:	Issue 1 Rev 0 July 7, 2016		
Distribution:	Controlled copies:	Uncontrolled copies:	
	Project Manager Contract File	Client: AKLNG	
Originated from:		Reviewed/authorised for issue by:	
Dave Sadoff, P.0	G., C.P.G.	Jeriann Alexander, PE, REAP	

A METHOD STATEMENT IS ONLY A SAFE METHOD OF WORKING IF IT IS DISCUSSED AND AGREED BEFORE WORK BEGINS AND THEN FOLLOWED BY THOSE CARRYING OUT THE WORK.

	-fugro	No:	Hydro-MS	6-02
METHOD STATEMENT		Page:	2 of 14	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Aquifer and Observation Well Installation	ons	Date:	July 2016	

1. Introduction

This method statement outlines the activities involved to perform air drilling to develop wells for both observation (OW) and to facilitate an aquifer pump test (APT) in Nikiski Alaska for the 2016 AKLNG Geophysical and Geotechnical site investigation. Pumped and observation wells will be installed to enable water withdrawal and aquifer monitoring to assess the nature of the ground water flow, yield, quality, and interconnectedness of the underlying water bearing strata.

2. Work Description

Aquifer pump test well installations will include the drilling of 7 borings, completed as groundwater wells in the areas shown on Plates 1 and 2 (all referenced plates are included in Appendix 1). Access routes are shown on Plate 3. The general The main office and field support building is located at the ASRC/Rig Tenders, Milepost 22.5 of the Kenai Spur Highway.

Seven new wells will be installed in support of the aquifer pump test (APT) program. Two 200foot deep wells (designated APT 1 and APT 2) will be installed within aquifer 2. One 260-foot deep well (designated APT 3) will be installed within aquifer 3. Two observation well pairs (designated OW 1 through OW 4), with each pair comprising of one 150-foot deep well (screened within aquifer 2) and one 100-foot deep well (screened within aquifer 1) will be installed.

All new wells will be installed in accordance with water well drilling and installation standards (ANSI/NGWA) and guidance. Water quality monitoring and sampling will be conducted following well completion in accordance with Hydro-MS-01.

	-fugeo	No:	Hydro-MS	6-02
METHOD STATEMENT		Page:	3 of 14	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Aquifer and Observation Well Installation	ons	Date:	July 2016	;

3. Manpower and Supervision

The table below lists the manpower involved with well installation and aquifer pump test activities and their responsibilities.

Nominated Person	Responsibility	
------------------	----------------	--

METHOD STATEMENT	fugro	No:	Hydro-MS-02	
		Page:	4 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	6

	Oversee the overall implementation of Onshore scope
	 All incident and accident reporting shall be reviewed and where necessary, investigated by the site manager to Fugro's satisfaction.
	 Liaise with the Fugro HSSE Manager, Marine Geophysical Lead, Geotechnical Lead, Site HSSE Manager, and with FUGRO's Project Manager on all matters related to HSSE.
	 Have an appreciation of HSSE standards / legislation affecting site operations and an understanding of their role in the management of health and safety.
	 Ensure that health and safety documentation is suitable and sufficient and meets contract HSSE requirements.
	 Ensure field supervisors are formally assigned appropriate duties and responsibilities to assist with the implementation of the project safety.
Fugro Site Manager	 Ensure that any person that appears to be affected by alcohol or drug abuse is removed from site and tested as appropriate.
	 Organize appropriate fire precautions, spill and first aid measures.
	 Ensure that plant and equipment is properly maintained in good working order.
	 Ensure only trained and competent personnel are allocated to operate equipment and tools on site.
	 Ensure that the Subcontractors Managers are aware of the safety requirements of the work involved to undertake this task.
	 Monitor the health and safety aspects of the project and operations.
	 Ensure that security measures are in place and utilized.
	 Ensure that all incidents are immediately communicated with the AKLNG.
	 Empowering all project personnel with STOP WORK AUTHORITY, and; ensuring all personnel understand that they have STOP WORK RESPONSIBILITY in accordance to Fugro policy.

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16

METHOD STATEMENT	Fugro	No:	Hydro-MS-02	
		Page:	5 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

Lead Hydrogeologic Services Manager	 Overall responsibility for all site activities Advise hydrogeologic staff on the requirement to comply with this method statement in order to enable the work to be carried out safely and obtain the required quality
Field Hydrogeologist/ Engineer	 Overall responsibility for onsite well installation and aquifer pump test activities Ensures subcontractors follow standard operating procedures and project requirements for site access, drilling, and well construction activities Communications with the Lead Hydrogeologic Services Manager during the drilling and well construction activities Report all incidents immediately to the Site Manager and Project HSSE Manager Be aware of the limits of land access to project sites (onshore). Stop work and seek clarification if unsure of access. Report any unsafe acts, practices or conditions via Hazard Observation Card. Develop a personal concern for the safety of themselves and others (iPOWER). Ensure that safe work practices and procedures are defined, documented and that geotechnical personnel are appropriately trained for their assigned tasks. Utilize STOP WORK AUTHORITY, in accordance to Fugro policy

METHOD STATEMENT		No:	Hydro-MS-02	
		Page:	6 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	5

	 Conducts drilling and well installation activities in accordance with project requirements Provides well construction materials and means to transport the materials to the well pads Conducts well development activities Report all incidents that result in injuries, illness, equipment damage/loss, fires, or cause environmental damage.
MW – Field Supervisor	 Manages drilling activities Completes 24-hour hazwoper training Conducting daily tool box talks/participation in HSE observation program
	 Ensuring all necessary equipment inspections/observations are completed Ensure personnel are fit for work
	 Manages logistics Ensures proper area signage and barriers are in place Utilize STOP WORK AUTHORITY, in accordance to Fugro policy
	 Conducts daily rig and equipment inspections/observations, ensure all safeguards are functional Participates in daily tool box talks/participation in HSE observation program
MW- Driller	 Oversees drilling and associated activities Conducts fueling of rig and equipment as necessary Ensure fit for work Utilize STOP WORK AUTHORITY, in accordance to Fugro policy
MW- Helper	 Participates in daily tool box talks/participation in HSE observation program Ensures stop work policy is followed Conducts fueling of rig and equipment as necessary Assists in drilling activities Ensure fit for work Utilize STOP WORK AUTHORITY, in accordance to Fugro policy

METHOD STATEMENT	fugro	No:	Hydro-MS-02	
		Page:	7 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	;

4. Associated Documents (Drawings, Manuals, Method Statements, Plans, Permits)

All borings and well installations, and temporary field staging areas, will be located within AKLNG property boundary, and at the staging area located at the ASRC.

The table below lists the other documents relevant to the groundwater monitoring activities.

Document	Reference Number
Fugro Project Execution Plan	USAL-FG-GPZZZ-00- 002016-001_A PEP for 2016 G&G
Onshore Emergency Response Plan	PEP Appendix 0-1
Project Emergency Contact List	Latest Issue
UTV MS	OS-GN-MS-001
Well Sampling Method Statement	HYDRO-MS-01
Air Drilling and Generator Refueling	HYDRO-MS-04
Location Plates, Routing Plate, and Well Schematic Plates	Appendix 1
APT Well Installation Drill Waste Screening and Discharging Procedures	Appendix 2
Site-Specific Lift Plans HS-F20; Slings and Rigging Handling HS-R73	Appendix 3
Permit to Work HS-R72, HS-F15	Appendix 4
Critical Spares	Appendix 5
Water Quality Sampling Schedule	Appendix 6

METHOD STATEMENT	fugro	No:	Hydro-MS-02	
		Page:	8 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

5. Risk Assessments

Risk assessment and Standard Operating Procedures for drilling and well installation activities are listed in the following table and are held on site enclosed in the Project Execution Plan.

Applicable Risk Assessment	TRA-Drilling Operations and Well Installation
HYD-TRA-003	Drilling/Well Installation
HYD-TRA-004	Fueling Air Drill Rig and Generator
HYD-TRA-005	Welding, Cutting, Grinding
HYD-TRA-006	Making Crane Lifts
AKLNG-002	Skid Steer Loader Operations
ON-GN-TRA-005	Equipment Recovery
ON-GN-TRA-001	Utility Terrain Vehicle Usage

6. Security - Barriers/Fences/Warning Signs

Access to the well locations will be restricted to Fugro employees, Client Representatives and Land Agents, and M-W Drilling.

A restricted area will be maintained for non-essential personnel. The restricted area will cover the drilling pad and extremities, as required by specific activities. Candlestick vertical delineators will be used to mark the extent of the no go area. Only personnel required to be within this area in order to complete assigned task will be allowed inside.

Due to the nature of the drilling operations, no personnel shall be within 50 feet of an operating machine without direct communication with the operator of the machine.

Required PPE signs will be posted at access point(s).

Welding will be conducted above the borehole. For arc flash, a single curtain will be deployed to offer protection to others in the area.

Equipment shall be properly secured at the end of each day.

METHOD STATEMENT	-fugeo	No:	Hydro-MS	6-02
		Page:	9 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

7. Constraints/Restrictions/Special Conditions

Drilling and well construction activities will take place during daylight hours only.

No smoking will be allowed while operating equipment.

No cell phone use while operating or spotting equipment.

Ensure spill prevention measures are in place.

Ensure first aid kit and eyewash in place.

Ensure refueling activities are consistent with HYDRO-MS-004 and HYDRO-TRA-004. All personnel will continually monitor for wildlife habitat. In the event of a sighting, the wildlife specialist or site manager will be notified.

Weather will continually be monitored. If inclement weather is encountered, appropriate safety measures will be followed.

If elevated work is required, ensure that ladder complies with appropriate industrial standards.

A roaming wildlife specialist will be available onsite.

The cuttings discharge area will be evaluated, and an exclusion zone/soft barrier will be installed if required.

A hot work permit will be in place for welding activities.

During welding, a fire watch will be utilized, a 20-pound ABC fire extinguisher will be staged at the welding location and for at least 30 minutes after completion of hot work.

8. Plant and Equipment

The following equipment will be used during drilling activities.:

Ingersoll Rand T2W Drill Rig and/or Shramm T555 Terex BT3470 Crane Truck Chrysler Ram 4550 Chrysler Ram 5500 Service Truck/with refueling tank and 200-gallon water tank Arctic Cat XT650 UTV Trax Skid Steer Project support trucks

METHOD STATEMENT	fugro	No:	Hydro-MS-02	
		Page:	10 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	i

Utility trailer Rig-mounted welder/generator Mesh reinforced visqueen and duck ponds PID meters Rig mats ABS 4X8 Surge block and bailer (for well development) Water totes (for well development water and sediment)

9. Materials (handling/storage/disposal)

Materials will be staged at selected areas to minimize handling distances.

Casing will be moved utilizing one or more of the following: trailer, crane truck or skid steer.

Boom truck/crane lifts: A lift plan will be in place for anticipated lifts. For non-plan lifts, a lift plan will be developed as necessary. Tag lines will be in place for crane lifts along with a dedicated rigger/signaler. Daily inspection of equipment will be conducted.

Recyclable waste and refuse will be processed at the ASRC.

Drill and well development water waste will be discharged according to the Well Installation Drill Waste Screening and Discharging Procedure.

Water generated during setting of well pumps in wells APT 1, APT 2 and APT 3 will be containerized in portable totes (fitted with a discharge valve) and staged onsite pending water sampling analytical results. Water will subsequently be transported and disposed in accordance with regulatory requirements. If water analytical results are within water discharge permit thresholds, water may be discharged into the Peterkin Quarry.

10. Welding and Hot Work

A hot work permit will be completed before performing hot work. Before commencing work, the area will be inspected within a 75-foot radius of the hot work activity location. Where practical, all combustible materials will be relocated 35-feet away from hot work activity location. Where impractical, combustible material will be covered with flameproof cover, shields, and/or wet down the material to help prevent ignition.

Planned welding and hot work activities include:

- Casing string assembly (welded each section joint)
- Screen section assembly

METHOD STATEMENT	fugro	No:	Hydro-MS-02	
		Page:	11 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

- Grinding for weld prep and weld
- Drilling shoe for first section
- Tool joint for lower screen section

A fire watch and 20-gallon ABC fire extinguisher will be staged at the hot work activity location during all hot work, and a minimum of 30 minutes after completion of the hot work.

Proper industry standard shades will be utilized for welding (minimum #10) and cutting (minimum #5) activities.

Grinders will be fitted with industry standard guards.

Portable well curtain or shield will be utilized to protect other workers in the area.

A letter of competency will be in place to ensure the welder is fit for task.

All compressed gas cylinders will be mounted upright. Cylinders will be fitted with DOT-approved caps during transportation.

Backflow prevention shall be in place. An approved device to prevent flashback will be in place.

All leads will be inspected, and replaced if found to be defective, or splices utilized.

All ground connections shall be checked to determine that they are mechanically strong and electrically adequate.

11. Preparation of Works/Location of Services

- Ground truthing has been performed at the drill pad locations in anticipation of drilling activities.
- Vegetation has been cleared from the well drilling locations under observation by Fugro. Additionally, an electromagnetic survey and GPR will be performed within the 60 feet by 60 feet pad clearance area.
- Proposed borehole locations will be marked to allow for subsurface utility locating efforts. Alaska One Call will be notified to ensure that proposed boreholes are not located near existing subsurface utilities.

Constructed drill pads will be prepared with sufficient space to be able to stage equipment and materials as displayed on the Conceptual Drilling Pad Equipment and Materials Layout plate. The staging will also facilitate access for refuelling and crane lifting activities.

METHOD STATEMENT	fugro	No:	Hydro-MS-02	
		Page:	12 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

Rig mats will be deployed as necessary to allow drill rig ingress/egress and for support at drill pad areas.

12. Emergency Procedures

Details of emergency response are incorporated in the project Specific Emergency Response Plan. Applicable sections of the PSERP will be discussed at the kickoff meeting. A copy of this document will be maintained onsite.

A spill kit and fire extinguishers will be staged onsite for quick response.

Emergency evacuation routes will be discussed during daily tool box talks.

Primary method for communication will be with cell phones. Good cell phone coverage has been encountered during past site activities.

13. Personal Protective Equipment (PPE) & Safety Equipment

The following personal protective equipment shall be worn during operations, and shall meet the applicable minimum ANSI standard:

Item	Description
Safety boots/shoes	Mandatory (for all site activities)
Hard hat	Mandatory
High visibility jacket/shirt/vest	Mandatory
Long sleeves	Mandatory
Gloves	As per risk assessment/safety data sheets
Safety glasses	As per light level and risk assessment
Ear defenders/ear plugs	Mandatory if noise above FAL 85dB(A); double hearing protection may be required in proximity to rig if applicable decibel standards are exceeded.

Additional personal protective equipment may be worn in case of special activities as deemed required.

METHOD STATEMENT	FUGRO	No:	Hydro-MS-02	
		Page:	13 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

14. Methodology & Sequence of Work

- Mobilization to site, journey management will be utilized.
- Stage casing to drill pads, lay rig mats as needed, utilizing service truck, crane truck, skid steer as necessary
- Move in and setup as shown on Conceptualized Pad Layout plate (see Appendix 3)
- Welfare facility, comfort station to be located as close to working area as practical
- Advance borings and casing to desired depths utilizing air drilling (casing hung and sections welded in vertical orientation).
- Field screening of drill cuttings (PID, visual, and olfactory)
- Surface discharge of drill waste in accordance with APT Well Installation Drill Waste Screening and Discharging Procedures (see Appendix 1)
- Install wells
- Develop wells (see detail below)
- Instrumentation of each well with water-level data loggers
- Installing electric downhole pumps into APT 1, APT 2, and APT 3
- Securing the wells
- Demobilization from site

Well development methods to be employed include the following:

Well development methods may include sand lifting, swabbing, airlifting, and bailing. The method(s) of development selected will depend on several factors, including water quality, aquifer quality, and water discharge considerations. Parameters such as initial depth to water, depth to water during purging, purging volume, water temperature, pH, DO, Ox/ReDOX, turbidity, temperature, and specific conductance will be recorded. A hand-held multimeter and water level indicator will be used during development activities, at intervals sufficient to gather representative groundwater data.

Groundwater from the pumped and observation wells will be sampled and tested following well development. In addition, groundwater collected from five Third-Party private wells near the APT area will also be sampled and tested at this time. The water quality sampling and testing will follow the procedures outlined in the Water Quality Monitoring Method Statement and as summarized in the sampling and monitoring matrix presented in Appendix 6. The data will be provided to AKLNG to aid in completing the permit requirements for allowing discharge into the quarry.

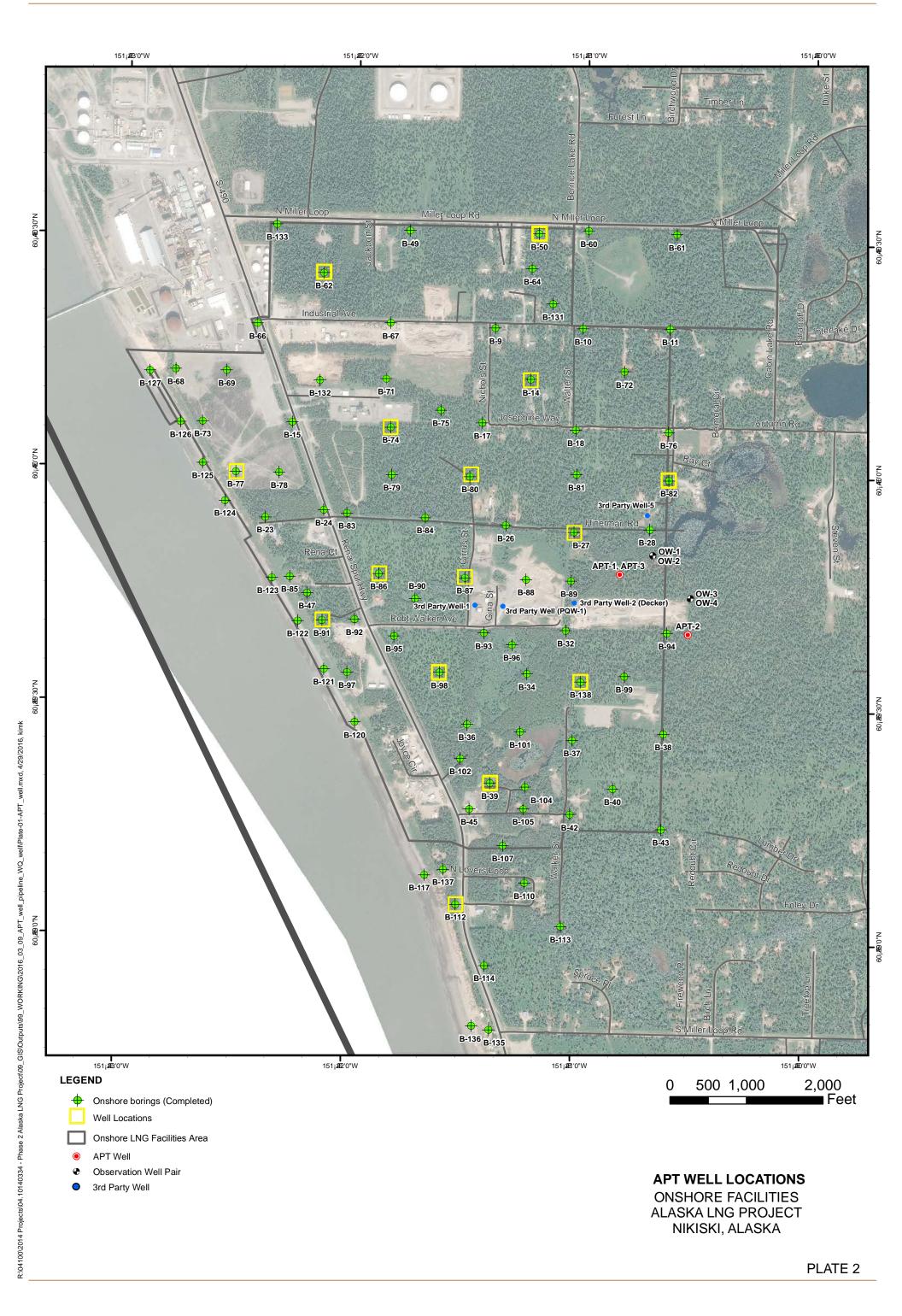
METHOD STATEMENT	Fugro	No:	Hydro-MS-02	
		Page:	14 of 14	
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

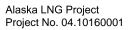
15. Appendices

Appendix 1. Plates: General APT Locations, APT and Observation Wells, APT Wells Routing, Conceptualized Pad and Refueling Setup, Well Schematics

- Appendix 2. APT Well Installation Drill Waste Screening and Discharging Procedures
- Appendix 3. Site Specific Lift and Slings/Rigging Handling Plans
- Appendix 4. Permit to Work
- Appendix 5. Critical Spares
- Appendix 6. Water Quality Sampling Schedule

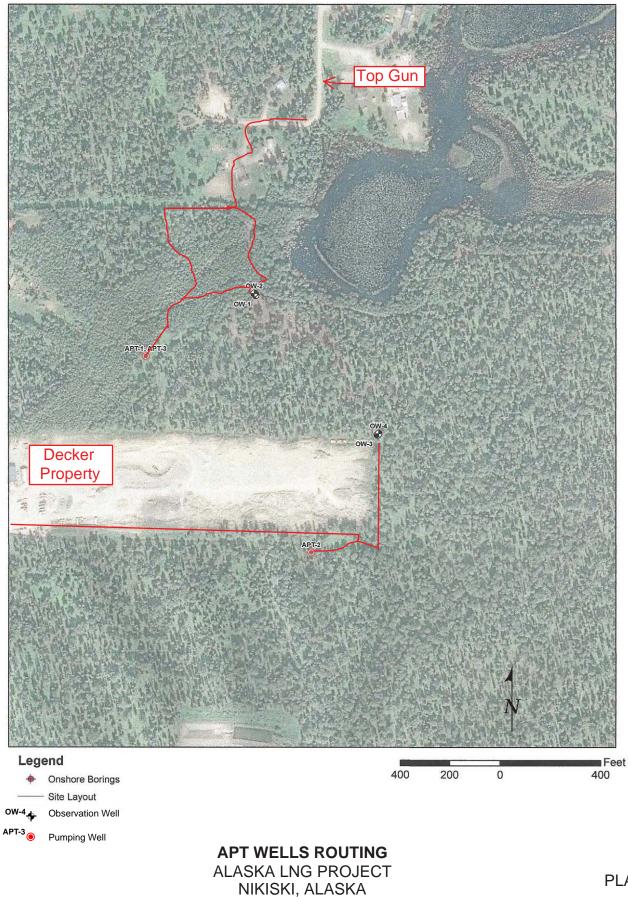
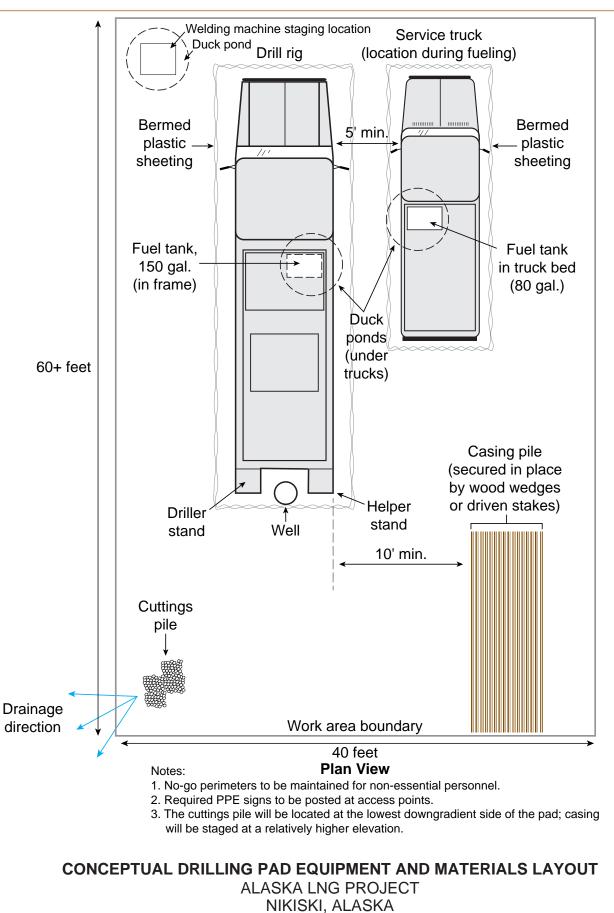
	-fugro	No:	Hydro-MS	6-02
METHOD STATEMENT		Page:	Appendix	1
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	;

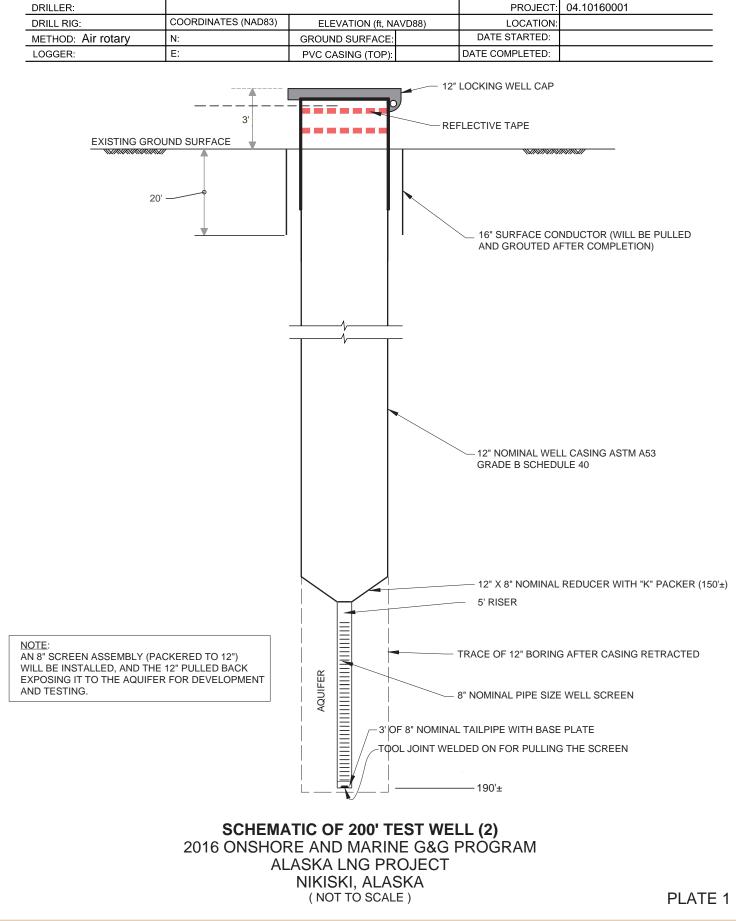

APPENDIX 1


PLATES

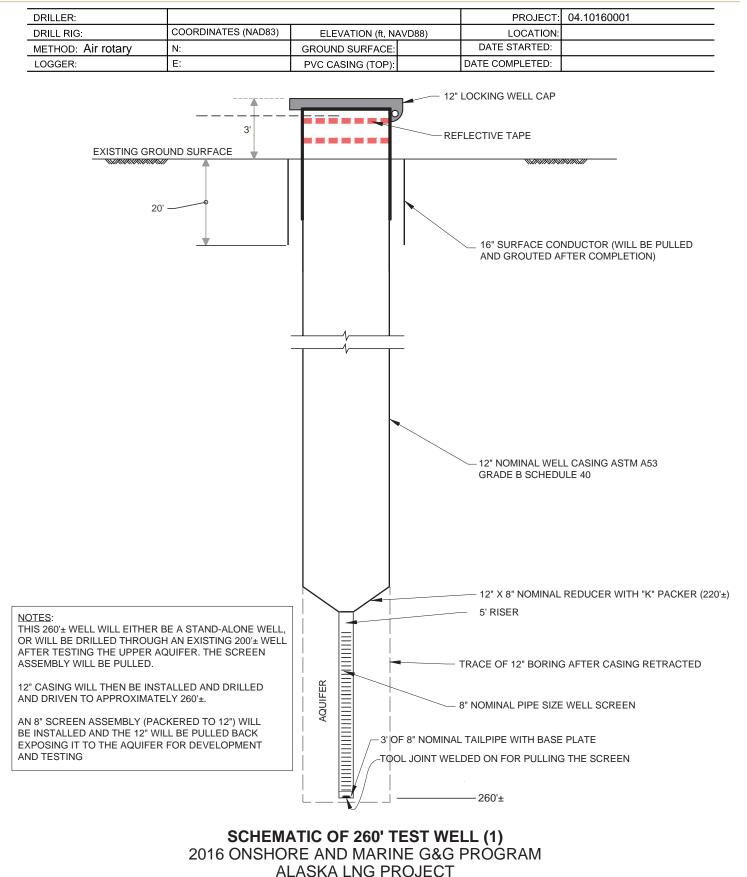
APT AND OBSERVATION WELL LOCATIONS WELL ROUTING CONCEPTUALIZED PAD AND REFUELING SETUP WELL SCHEMATICS

Project No. 04.10160001

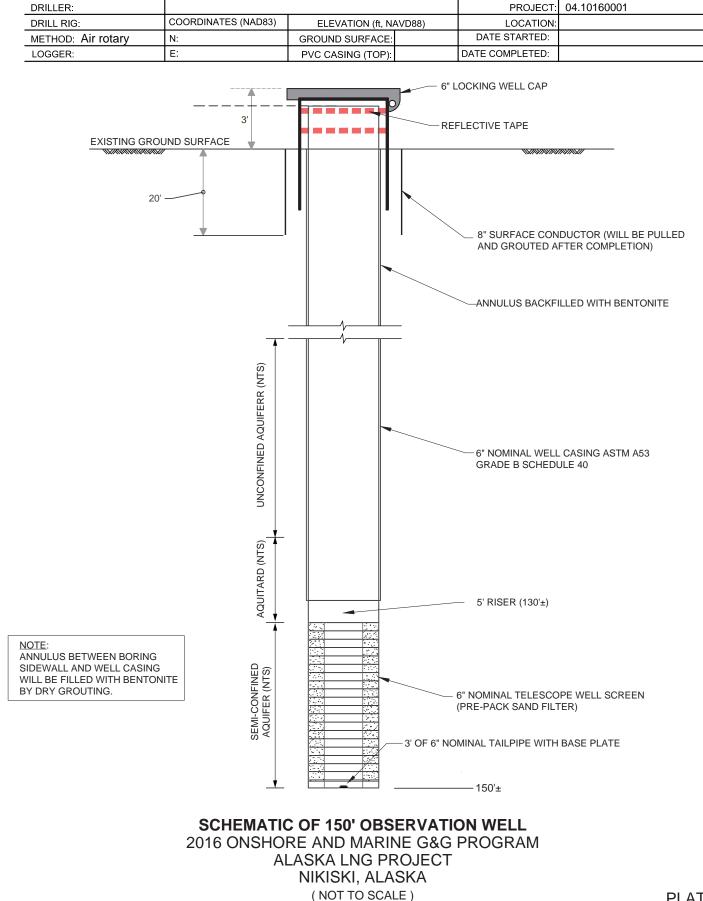

PLATE 5

Alaska LNG Project Project No. 04.10160001

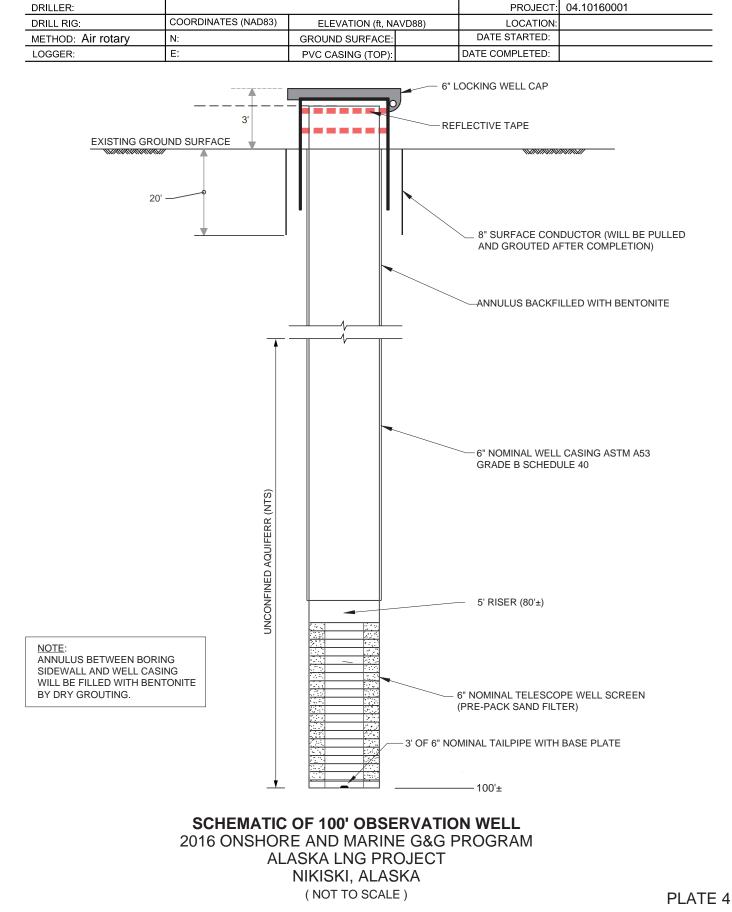


Wells.ai

NIKISKI, ALASKA (NOT TO SCALE)


PLATE 2

Wells.ai


est

2016/Graphics/04 10160001 Plates 5-8 Schematic

	-fugeo	No:	Hydro-MS	6-02
METHOD STATEMENT		Page:	Appendix	2
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

APPENDIX 2 APT WELL INSTALLATION DRILL WASTE SCREENING AND DISCHARGING PROCEDURES

APT Well Installation Drill Waste Screening and Discharging Procedures

Seven wells will be drilled in support of planned aquifer pump testing. The area selected for the APT and observation wells was selected, in part, for its lack of anthropogenic interferences, and as such drilling waste materials are not likely to be impacted. However, drilling wastes will be screened and discharged in accordance with the following procedures to minimize potential adverse impacts to the environment. It is anticipated that drilling wastes will consist of approximately 10% water and 90% soil particles above the aquifer, and approximately 30% water and 70% soil particles within the aquifer.

Drill Waste Screening

- At the start of drilling at each well location, drill waste discharge will be directed onto plastic sheeting, downslope of the well location, to allow for visual and olfactory observations and monitoring with a photoionization detector. PID screening will occur a minimum of every 2 feet within the top 10 feet, and at a minimum of every 5 feet thereafter to the total drilled depth.
- If no conditions of concern are observed, the drilling wastes will be discharged as described below. Observations (visual, olfactory and PID) will be made a minimum of every 5 feet throughout the drilling activities. Should any indications of drill cutting/water potential contamination be observed (i.e., odorous or discolored materials); drilling activities will cease immediately.
 - o AKLNG will be notified immediately and apprised of the observations.
 - Materials which are observed to have odor or discoloration will be containerized.
 - A path forward will be discussed with AKLNG.

Drill Waste Discharging

If there are no indications of drill cutting/water contamination, the following discharge procedures will be employed.

- Drill waste discharge will be directed toward downslope areas, away from the drilling pad in an area bordered by erosion mat rolls and away from existing drainage pathways.
- Spray pattern will aerate and disperse the materials within the mat roll delineated area to minimize surface erosion.
- Surface conditions in the area of discharge will be periodically monitored. If unsafe or adverse environmental conditions are observed; drilling activities will cease immediately.
 - o AKLNG will be notified immediately and apprised of the observations.
 - A path forward will be discussed with AKLNG.
- Subsequent to termination of drilling activities, erosion mat rolls will be removed and cuttings spread evenly; surface conditions in the discharge area will be evaluated, and AKLNG will be contacted to discuss if additional measures are warranted.

	-fugeo	No:	Hydro-MS	S-02
METHOD STATEMENT		Page: App	Appendix	3
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	6

APPENDIX 3 LIFT AND SLINGS/RIGGING HANDLING PLANS

LIFT PLAN (PART 1)

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16

Form HS-F20

(To be completed by the Competent F	Person)				
Installation/Ship/Barge/Other:		Location (main dec	k, back deck, truc	k, yard):	
Permit to Work No:	Risk Assessment N	lo:	Lift Plan No:		
Weight of Load, Actual or Assessed (de	lete as applicable):				
DESCRIPTION OF LIFTING OPERATION	ON				
POSSIBLE CONSIDERATIONS (not ex		ation holow)			
(Tick if relevant and address each point	In Step-by-Step se	ction below)			
Weight not verified	Lifting of chem	icals	Conflicting ta	asks in area	
High centre of gravity	Load on pallet	requires securing	Dynamic fac	tors involved	
Stability of load	Seafastening r	emoved	Hazards to p area	personnel in th	ie
Awkward size/shape/sharp edges	Restricted hea confined work		Communica	tion requireme	ents
No dedicated lifting points on the load	No lifting point load	directly above the	Adequate lig	hting and visi	bility
No certified suspension points for the lifting equipment	ension Appropriate and correctly Is the use of tag lines				
ROUTE TO BE TRAVELLED AND LAY	DOWN AREA				
(If you can't answer either, address in th	he Step-by-Step sect	ion)		Yes	N/A
1) Are the route and laydown area clear	of obstructions?				
2) Is the laydown/landing area adequate	in terms of size and	l load-bearing ability	?		
3) Is suitable packing available for prote	ection of the load, lifti	ng equipment, slings	etc?		
3) Is suitable packing available for prote4) Have barriers been positioned to prev			etc?		
	vent access by unau	thorised personnel?			
4) Have barriers been positioned to pre-	vent access by unau	thorised personnel? perating limits/radius	of the equipment?		
 4) Have barriers been positioned to previous for the second sec	vent access by unau a area is within the op considered with rega be able to see the Ba	thorised personnel? perating limits/radius ards to the safety of t anksman throughout	of the equipment? he lifting operatior the operation, or	n? has	
 4) Have barriers been positioned to prev 5) Have you confirmed that the laydown 6) Have environmental conditions been 7) Will the Lifting Equipment Operator b 	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or	n? has	
 4) Have barriers been positioned to previous for the service of the serv	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	has (ie.	sible)
 4) Have barriers been positioned to prevent of the second secon	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	n? has	sible)
 4) Have barriers been positioned to previous for the service of the serv	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	has (ie.	sible)
 4) Have barriers been positioned to previous for the service of the serv	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	has (ie.	sible)
 4) Have barriers been positioned to previous for the service of the serv	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	has (ie.	sible)
 4) Have barriers been positioned to previous for the service of the serv	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	has (ie.	sible)
 4) Have barriers been positioned to previous for the service of the serv	vent access by unaut a area is within the op considered with rega be able to see the Ba s of communication r materials in the area	thorised personnel? perating limits/radius ards to the safety of t anksman throughout been checked and	of the equipment? he lifting operatior the operation, or made available	has (ie.	sible)

1

LIFT PLAN (PART 2)

Form HS-F20

(leted by the Competent Person)		
SKETCH DE	TAILING THE RIGGING UP OF THE L	IFTING EQUIPMENT AND LIFTING A	CCESSORIES
LIFTING EQ	UIPMENT AND LIFTING ACCESSORIE	ES TO BE USED (Specify type and S)	NL)
DEBRIEF AI	ND LEARNING POINTS (Did the lift	ing operation go as planned or a	re changes to the lift plan
DEBRIEF AI required?)	ND LEARNING POINTS (Did the lift	ing operation go as planned or a	re changes to the lift plan
DEBRIEF AI required?)	ND LEARNING POINTS (Did the lift	ing operation go as planned or a	re changes to the lift plan
DEBRIEF AI required?)	ND LEARNING POINTS (Did the lift	ing operation go as planned or a	re changes to the lift plan
DEBRIEF AI required?)	ND LEARNING POINTS (Did the lift	ing operation go as planned or a	re changes to the lift plan
required?)			
DEBRIEF AI required?)	ND LEARNING POINTS (Did the lift Print Name:	ing operation go as planned or an Signature:	re changes to the lift plan Date:

SLINGS & RIGGING MATERIAL HANDLING HS-R73

1.0 PURPOSE

This document covers use, inspection and maintenance of purchased slings and rigging hardware for attaching loads to hoists.

2.0 APPLICATION

The requirements of this document apply to all facilities that utilize slings and rigging materials.

3.0 MANUFACTURE

Slings and rigging hardware shall be manufactured to comply with the applicable sections of (American Society of Mechanical Engineers) ASME B30.20, ASME B30.26, and ASME B30.9.

Identification shall be a part of the manufacturing process.

Each sling shall be marked per ASME B30.9 to show the following:

- Name or trademark of manufacturer
- Rated loads for the type of hitch used and the angle upon which it is based
- Diameter or size of sling

Rigging hardware shall be marked per ASME B30.26, including manufacturer's name or trademark, size or rated load. See ASME B30.26 for marking requirements of specific hardware types.

Note: Hardware labeled with only country of origin does not comply with this standard.

4.0 USE

All slings and rigging hardware shall meet the requirement of and be used in accordance with the latest editions of ASME B30.20, ASME B30.26, ASME B30.9, and OSHA 1910.184.

Slings and rigging hardware that appear to be damaged will not be used for any reason. They are to be destroyed and discarded.

All slings shall be assigned unique identifying IDs by the responsible company/division to facilitate sling inspections. All slings shall legibly display the ID as well as the manufacturers load rating tag or be removed from service. All sling ID information shall be recorded on inspection documents.

1 of 9

Approved by QHSE Manager, Fugro Consultants, Inc., May 2012

Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

The rigging qualified person/operator is responsible for ensuring the sling identification is legible and shows the rated capacities for each type of hitch (vertical, basket and choke), prior to each use.

Rigging equipment shall be inspected to ensure it is safe. Rigging equipment for material handling shall be inspected prior to use on each shift and as necessary during its use to ensure that it is safe.

Rigging equipment not in use shall be removed from the immediate work area.

All employees shall be kept clear suspended loads. Area where lift will take place should be cleared before lift is attempted.

5.0 RIGGING GUIDELINES

5.1 PLANNING

Know where the center of gravity is. The weight of the load must be known, calculated, estimated, or measured.

Know the sling angle. The smaller the sling angle, the greater the load on the rigging gear.

At 30 degrees horizontal sling angle, the forces are doubled.

The working load limit (WLL) of most equipment is based on in-line loading. If the sling pulls off at an angle, you must know if the manufacturer allows it, if the WLL is affected, and whether there are any special requirements.

Protect equipment from sharp edges. The strength of slings can be reduced dramatically.

Make sure the manufacturer has its name or logo on the hardware and on the sling, and that the size or working load limit is clearly marked. The capacity of all rigging must be known.

Rigging equipment shall not be loaded beyond its recommended safe working load and load identification shall be attached to the rigging.

Proper load control means the load lifts are level and stable. Placing the load hook over the center of gravity is an essential first step. Placing the slings around the center of gravity is the second step. Next, select a hitch that will attach to the load securely at the sling angle being used. Tag lines shall be used unless their use creates an unsafe condition.

Evaluate the rigging gear to make sure it is suitable for overheard lifting. The manufacturer must clearly indicate it is suitable for overhead lifting and must meet requirements for lifting gear. The condition of the gear must be acceptable to allow it to continue in service with the working load limit still valid. Do not use damaged gear.

2 of 9

Rigging gear that is unacceptable must be removed from service and discarded. Do not allow damaged gear to be used or taken home from the jobsite.

5.2 PRACTICES

- Shorten and adjust slings only by using methods approved by the manufacturer.
- Don't shorten or lengthen slings by knotting or twisting.
- Hitch the sling in a manner providing control of the load.
- Pad sharp edges that contact the sling.
- Avoid shock loading.
- Do not rest loads on the sling.
- Do not pull slings from under a load when the load is resting on the sling.
- Avoid twisting and kinking during lifting, with or without a load.
- Be alert for possible snagging.
- In a basket hitch, balance the load to prevent slippage.
- When using a basket hitch, the legs of the sling should contain or support the load from the sides and above the center of gravity, so the load remains under control.
- Do not drag slings on the floor or over an abrasive surface.
- The choke point of a choker hitch should only be on the sling body.
- Further reduce the load when a choker hitch has an angle of choke of less than 120 degrees.
- The load, hook, or any fitting should not constrict, bunch, or pinch the sling.
- Center the load applied to the hook in the base (bowl) of the hook.
- An object in the eye of a wire rope sling or synthetic webbing sling shouldn't be wider than 1/2 the length of the eye.
- Hooks shall be of a type that can be closed and locked, eliminating the hook throat opening.
- An alloy anchor type shackle with a bolt, nut and retaining pin may be used in place of a hook.

6.0 INSPECTIONS

Rigging degradation not only indicates that the rigging is becoming unsafe and requires replacement; it also often indicates problem(s) with the rigging setup, use, or maintenance. Evidence of failure is cause for replacement of the rigging. Rigging shall be inspected by a competent person and replaced in accordance with ANSI/ASME B30.9 and the manufacturer's recommendations. Rigging inspections are the responsibility of the company/division that owns/possesses the equipment.

6.1 INSPECTION FREQUENCIES

6.1.1 Initial Inspection

Prior to use, a designated person shall inspect new, altered, modified, or repaired slings and rigging equipment. Written records are not required.

Approved by QHSE Manager, Fugro Consultants, Inc., May 2012

Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

6.1.2 Periodic inspection

A designated person should perform a complete inspection *annually*. The entire length--splices, attachments, and fittings should be inspected. Examine the sling to determine if it is hazardous. Keep records of the most recent periodic inspection, including the condition of the sling. Sling inspections shall be documented on HSE-F19 Sling Inspection form.

<u>Note</u>: All slings and rigging hardware that do not pass inspection and/or in questionable condition are to be placed out of service and disposed of. It may be pertinent to cut the sling in half so that it cannot be used accidentally. At the minimum, rigging shall be inspected for the following failure modes:

6.2 FAILURE MODES

6.2.1 Wire Rope

- Missing or illegible sling ID & load rating tag
- Broken wires: for strand laid and single part slings, ten randomly distributed broken wires in one rope or five broken wires in one strand of one rope lay; for cable laid and braided slings, see table below.
- Severe localized abrasion or scraping.
- Kinking, crushing, bird caging, protruding core or any other damage resulting in distortion of the rope structure.
- Severe corrosion of the rope or end fittings.
- Evidence of electric arc or heat damage.
- Excessive pitting or corrosion, or cracked, distorted, or broken fittings.
- Diameter reduction:
 - Reductions of 1/64 in (.04 cm) for diameters up to and including 5/16 in (.79 cm);
 - Reductions of 1/32 in (.08 cm) for diameters 3/8 in (.95 cm) up to and including 1/2 in (1.3 cm);
 - Reductions of 3/64 in (.12 cm) for diameters 9/16 in (1.4 cm) up to and including 3/4 in (1.9 cm);
 - Reductions of 1/16 in (.15 cm) for diameters 7/8 in (2.1 cm) diameter up to and including 1-1/8 in (2.8 cm);
 - Reductions of 3/32 in (.24 cm) for diameters 7/8 in (2.1 cm) up to and including 1-1/2 in (3.8 cm).
- Significant stretching of the wire rope beyond the initial construction stretch.
- Any sign of metal fatigue or other visible damage that causes doubt as to the strength of the wire rope.

4 of 9

Approved by QHSE Manager, Fugro Consultants, Inc., May 2012

Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

6.2.2 Chain

Inspect chains on an individual link basis. Chains shall be cleaned before they are inspected, as dirt and grease can hide nicks and cracks.

- Missing or illegible sling ID & load rating tag
- Wear: Replacement shall be as scheduled in Table 2.
- Stretch: Compare the chain with its rated length or with a new length of chain. If the length is increased 3%, the chain must be thoroughly inspected. If the length is increased by 5% or more, the chain shall be replaced.
- Deformed links: Deformed (twisted or bent) links, or any chain in which a link assembly does not hinge freely with the adjoining link.
- Cuts, gouges, or nicks: If the depth of the cut or gouge exceeds the value shown in Table 2, the assembly shall be replaced.
- Cracks: Cracks and other visible damage that causes doubt as to the strength of the chain.

6.2.3 Synthetic Webbing Slings

- Missing or illegible sling ID & load rating tag
- Acid or caustic burns.
- Melting or charring of any part of the sling.
- Snags, holes, tears, or cuts.
- Broken or worn stitches.
- Excessive abrasive wear.
- Knots in any part of the sling.
- Wear or elongation exceeding the amount recommended by the manufacturer.
- Excessive pitting or corrosion, or cracked, distorted, or broken fittings.
- Other visible damage that causes doubt as to the strength of the sling.

6.2.4 Attachments

- Hooks that have been opened more than 15% of the normal throat opening (measured at the narrowest point) or twisted more than 10% from the plane of the unbent hook.
- Deformed master links and coupling links.
- Assemblies with cracked hooks or other end fittings.
- Excessive pitting or corrosion, or distorted or broken fittings.
- Other visible damage that causes doubt as to the strength of the attachment.
- Shackles: See the Fugro "Shackle Use and Inspection Procedure".

Approved by QHSE Manager, Fugro Consultants, Inc., May 2012

Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

7.0 MAINTENANCE

Slings and rigging hardware shall be stored in an area where they will not be subjected to mechanical damage, corrosive action, moisture, and extreme temperatures or kinking. Some slings, when stored in extreme temperatures will experience reduced performance. Further consideration should be made with regard to storage and use in extreme conditions. Complete HS-RF19 Equipment Maintenance for reporting sling and rigging hardware deficiencies. Slings and rigging hardware are not to be repaired. Once received by maintenance, slings and rigging hardware shall be made where they cannot be used and disposed of accordingly.

8.0 TRAINING

Training shall be conducted in accordance with HS-R72 Indoor Cranes.

9.0 APPLICABLE FORMS

HS-R72 Indoor Cranes

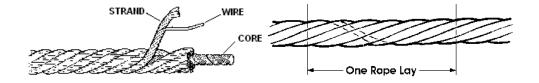
HS-F98 Sling Inspection

HS-RF19 Equipment Maintenance

10.0 REFERENCES

ASME B30.20, ASME B30.26, ASME B30.9

OSHA 1910.184


Rev. #	Date	DCR #	Approved By:	Description of Change:
0	5/2012			Initial Document Release

APPENDIX 1 - INSPECTING WIRE ROPE FOR BROKEN WIRES

Inspecting Wire Rope for Broken Wires

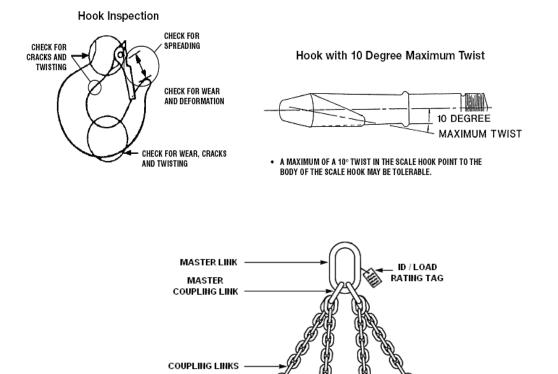
Sling Body	Allowable broken wires per lay or one braid	Allowable broken wires per sling length
Less than 8-part braid	20	1
Cable laid	20	1
8-part braid or more	40	1

Note: One rope lay is one complete wrap of a strand around the core

APPENDIX 2 - ALLOWABLE CHAIN WEAR

Allowable Chain Wear

Nominal Chain Size	Maximum Allowable Wear of Diameter
9/32 in (0.7 cm)	0.037 in (.09 cm)
3/8 in (0.9 cm)	0.052 in (.13 cm)
1/2 in (1.3 cm)	0.069 in (.18 cm)
5/8 in (1.5 cm)	0.084 in (.21 cm)
3/4 in (1.9 cm)	0.105 in (.27 cm)
7/8 in (2.1 cm)	0.116 in (.29 cm)
1 in (2.5 cm)	0.137 in (.35 cm)
1-1/4 in (3.1 cm)	0.169 in (.43 cm)


GOUGED LINKS

8 of 9

APPENDIX 3 - ATTACHMENTS

SLING HOOK / END ATTATCHMENT

9 of 9

	-fugro	No:	Hydro-MS	6-02
METHOD STATEMENT		Page:	Appendix	4
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

APPENDIX 4 PERMIT TO WORK HS-R72, HS-F15

Permit to Work HS-R72 Revision 0

PERMIT TO WORK HS-R72

1.0 INTRODUCTION

1.1 SCOPE

This documented procedure is applicable to all FCL personnel as well as any client or subcontractor working at a FCL project or facility.

1.2 PURPOSE

The purpose of this procedure is to define the Fugro Consultants, Inc (FCL) Permit to Work (PTW) process. This procedure sets out the requirements for work involving high risk activities, which are to be controlled by a PTW. A PTW is an extension of a safe system of work and should not be seen as a replacement for it.

2.0 DEFINITIONS

- Hot Work Such as: welding, grinding, burning, torch-cutting, etc.
- Confined Space Work area that has limited or restricted means for entry or exit and is not designed for continuous employee occupancy. Such as: tanks, vessels, storage bins, excavations, etc.
- Electrical Work
 Work on electrical installations/equipment. All work involving possible contact with live electrical equipment, motors and/or conductors.
- Equipment Maintenance

Work on mechanical installations/equipment. All work involving possible exposure to stored energy, and/or, where there is a risk of the equipment being started remotely, and/or, where there is a chance of entanglement, trapping or crushing, etc.

- Working At Height Work above 4' (general industry) and 6' (construction). Excluding work in guarded/protected work areas or platforms.
- PTW Recipient
 An employee planning a work activity that involves hot work, confined space entry, electrical work, equipment maintenance or work at height.
- PTW Approver The PTW Recipient's supervisor or another employee designated/competent to issue a PTW.

1 of 2

Permit to Work HS-R72 Revision 0

3.0 PROCEDURE

The PTW shall be completed by the person supervising or undertaking the work activity (PTW Recipient) and approved by the appropriate supervisor (PTW Approver) prior to undertaking the activity. In the event that the task to be performed is not covered by this PTW procedure, as defined above, a Jobsite Hazard Analysis (JHA) should be completed to document and mitigate the hazards of the task. The JHA should be approved by the appropriate supervisor prior to undertaking the activity. Implementation of the PTW system includes the following general principles:

- 1) Assessment of the work activity/task by the PTW Recipient and the PTW Approver.
- 2) Completion of the PTW (HS-F15) with detailed and accurate information:
 - The work activity/task to be undertaken.
 - Location of the work.
 - Identification of significant precautions/control measures including personal protective equipment (PPE).
 - Validity, e.g. date, start and completion time.
 - Associated risk assessment and method statements (if applicable).
- 3) Completed PTW forms must be filed and posted as follows:
 - Approved PTW shall be present at the location of the work.
 - If the work activity/task is not completed within a 12 hour period, the PTW Recipient shall inform the PTW Approver, who may, at their discretion, revalidate the permit for a further 12 hours. Any further extension shall require a new permit to be issued.
 - Once work activity/task(s) are completed, the PTW should be returned to the PTW Approver for review/filing.
 - When the work activity/task(s) are completed, the PTW Approver should inspect the location/work area ensuring that it is safe. The PTW will be closed out by the PTW Approver on completion of the inspection.

Rev. #	Date	DCR #	Approved By:	Description of Change:
0	2/2014		СМ	Initial Document Release

2 of 2

PERMIT TO WORK FORM HS-F15

fugeo 24-Hour Emergency Safety Nu 1-888-333-4577

1

Work to be completed:			Location of Wo	ork:	
Date of Work:		Permit Recipient:			
Permit Issue Time:		Permit Approver:			
Permit Expire Time:			Permit Extende	ed?	Yes No N/A
Permit Completion Time:			Permit Extensi	on Approval (approver's initials):	
Risk Assessment Carried Out	🗌 Ye	s 🗌 No	Emergency P Plan)	rocedures in Place (ie Rescue	Yes No N/A
Lock Out / Tag Out applicable?	🗌 Ye	s 🗌 No	Toolbox Talk C	Conducted?	Yes No
Confined Space Entry		N/A		Work At Height 🔝 N	/A
Space thoroughly ventilated;		Yes	No N/A	Fall Protection to be utilized;	Yes No N/A
Atmosphere tested and found to be	safe;	Yes	No N/A	Fall Protection inspected;	Yes No N/A
Clean certificate obtained (rail cars)					
Rescue and resuscitation equipmer available at entrance;	nt	Yes]No □ N/A	Employee trained in fall protection use;	Yes No N/A
Rescue plan developed;					
Responsible person in attendance a entrance;	at	☐ Yes []No □N/A	Freefall less than 6 feet;	Yes No N/A
Communication arrangements mad between person at entrance and the entering;		Yes []No □N/A	Fall distance / length of fall protection adequate;	n 🗌 Yes 🗌 No 🗌 N/A
Access and illumination adequate;		Yes	No 🗌 N/A	100 % Tie-Off;	Yes No N/A
All equipment to be used is of appro type;	oved	Yes	No 🗌 N/A	Guardrail system in place / sufficien	t; Yes No N/A
When breathing apparatus is to be	used:	Yes	No 🗌 N/A	Scaffolding inspected / tagged;	Yes No N/A
Familiarity of user with apparatus is confirmed;					
Apparatus has been tested and four be satisfactory.	nd to				
Equipment Maintenan	ce 🛛	N/A		Electrical Work	N/A
Removed from service / isolated fro source of power / energy source;	m	Yes [No 🗌 N/A	Equipment fully de-energized;	Yes No N/A
All relevant personnel informed;		Yes	No 🗌 N/A	Lock/ Out Tag Out required;	Yes No N/A
Warning notices displayed;		Yes	No N/A	Hazardous atmosphere assessed;	Yes No N/A
Hot Work 🗌 N/A					
Ventilation adequate;		Yes] No 🗌 N/A	Fire extinguisher in good order;	Yes No N/A
Equipment in good working order;		Yes [] No 🗌 N/A	Area clear of dangerous material an gas-free;	d Yes No N/A
Fire watch in place (To remain in place N/A	ace for a	a minimum of	30 minutes after	completion of hot work);	Yes No

Acknowledgement:				
Permit Recipient Name: Permit Recipient Signature:				
Permit Approver Name: Permit Approver Signature:				

Page 1 of 1

Approved by QHSE Manager, Fugro Consultants, Inc., February 2014 Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

	FUGRO	No:	Hydro-MS-02	
METHOD STATEMENT		Page:	Appendix	5
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	5

APPENDIX 5 CRITICAL SPARES

CRITICAL SPARES

1: Casing hammer parts -spare lifting chains X 2 -spare driver chain -spare connecting links for both lifting and driver chains -spare top seal

2. Top drive parts

-spare swivel seals -spare drive motor -spare bottom seals

Drive line parts

-All drive line parts including u-joints are readily available at Young's Gear

4. Hydraulic lines and air lines -All lines and hoses are readily available at Oil and Gas Supply in Nikiski

5. Oil and air filters -All filters are Napa brand and readily available In Kenai

6. Oil and lubricants -All oil and lubricants are Chevron brand and available in Kenai

7. Air Compressor

-Available in Kenai

	fugro	No:	Hydro-MS-02	
METHOD STATEMENT		Page:	Appendix	6
ALASKA LNG (AKLNG) Aquifer and Observation Well Installations		Issue:	1	Rev 1
		Date:	July 2016	

APPENDIX 6
WATER QUALITY SAMPLING SCHEDULE

Well Id	April Sampling Event General Groundwater Quality Suite (Table 2) Completed	APT Water Quality Sampling Event A (prior to Pumping Test 1)	Water Quality Parameter Monitoring Event A (APT 1 & 2)	APT Water Quality Sampling Event B (prior to Pumping Test 2)	Water Quality Parameter Monitoring Event B (APT 3)	July/August Sampling Event Water Supply Quality Suite (Table 3)	Notes
MW-27B	X 1		Y		Y	X 1	
MW-39A	X					X	
MW-39B	X					X	
MW-50A	X					X	
MW-50B	X					X	
MW-62A	X					X	
MW-74A	X		Y			X	
MW-74B	X		Y			X	
MW-82A	X		Y		Y	X	
MW-82B	X		Y		Y	X	
MW-87B	X 1		Y		Y	X 1	
MW-91A	X		Y			X	
MW-138B			Y		Y		
APT-1	not available	Z1	Y	Z	not available	not available	deepened to become APT3
APT-2	not available	Z1	Y	Z	Y	Z	
APT-3	not available	not available	not available	Z 1	Y	Z	lab required prior to pumping
OW-1	not available	Х	Y	X	Y		originally premised for Z analytes
OW-2	not available	Z	Y	Z	Y	Z	
OW-3	not available	Х	Y	X	Y		originally premised for Z analytes
OW-4	not available	Z	Y	Z	Y	Z	
Third Party W-1	X 1		Y	X 1	Y	X 1	originally premised for Z analytes
Third Party W-2 (Decker)	X 1		Y	X 1	Y	X 1	originally premised for Z analytes
Third Party W-5		Z	Y		Y	Z	
Third Party Well (PQW-1)	X 1		Y	X 1	Y	X 1	originally premised for Z analytes

Notes:

1 = Samples additionally analyzed and reported per ADEC requirements for DAH (BTEX) and TAqH (PAH).

X = initial basic suite of analytes

Z = comprehensive water supply suite of analytes

Y = monitoring with field WQ probe

? = lower priority/optional

Required for submittal to ADEC

METHOD STATEMENT	FUGRO	No:	Hydro-01	
		Page:	1 of 6	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Well Sampling		Date:	April 2016	6

CONTENTS

- 1. Introduction
- 2. Main Activity/Area of Work
- 3. Manpower and Supervision
- 4. Associated Documents (Drawings, Manuals, Method Statements, Plans, Permits)
- 5. Hazard/Risk Assessments
- 6. Security Barriers/Fences/Warning Signs
- 7. Constraints/Restrictions/Special Considerations
- 8. Plant and Equipment
- 9. Materials (handling/storage/disposal)
- 10. Preparation of Works/Location of Services
- 11. Emergency Procedures
- 12. Personal Protective Equipment/Safety Equipment
- 13. Methodology & Sequence of Work

Issue details:	Issue 1 Rev 1 April 23, 2016	
Distribution:	Controlled copies:	Uncontrolled copies:
	Project Manager Contract File	Client
Originated from:		Reviewed/authorized for issue by:
Jeriann Alexand	er, PE, REA	Jeriann Alexander, PE, REA

A METHOD STATEMENT IS ONLY A SAFE METHOD OF WORKING IF IT IS DISCUSSED AND AGREED BEFORE WORK BEGINS AND THEN FOLLOWED BY THOSE CARRYING OUT THE WORK.

METHOD STATEMENT	FUGRO	No:	Hydro-01	
		Page:	2 of 6	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Well Sampling		Date:	April 2016	

1. Introduction

This Method Statement relates to groundwater monitoring activities.

2. Main Activity / Area of Work

Existing monitoring wells and 3rd party wells located within the AKLNG property boundary including the area of staging located at the ASRC. Groundwater sampling activities will include:

- Mobilizing and demobilizing to the staging area and each individual well location
- Data logger water level data retrieval, and removal of data logger equipment
- Use of down-hole water level indicators and water quality parameter meters
- Use of down-hole low-flow electric pumps to purge the wells and for sampling
- Pump power provided by gasoline powered generators
- Shipping of samples to the analytical laboratory
- Relocation of purge water to the temporary drum storage area
- Replacement of data logger equipment
- Re-securing of the wells
- Transportation and disposal of well purge water at an approved facility

3. Manpower and Supervision

The table below lists the manpower involved with groundwater monitoring activities and their responsibilities.

Nominated Person	Responsibility	
Lead Hydrogeologic Services Manager	 Overall responsibility for all site activities Advise hydrogeologic staff on the requirement to comply with this method statement in order to enable the work to be carried out safely and obtain the required quality 	

METHOD STATEMENT		No:	Hydro-01	
		Page:	3 of 6	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Well Sampling		Date:	April 2016	;

	 Overall responsibility for groundwater monitoring activities
	Conducts water level retrieval from data loggers
Field Hydrogeologist/ Engineer/Site Manager	 Ensures subcontractors follow standard operating procedures and project requirements for site access and monitoring activities
	 Communications with the Lead Hydrogeologic Services Manager during the monitoring activities
SLR Lead Scientists and Scientists	 Conducts water level monitoring and sampling activities in accordance with project requirements Facilitates water sample delivery to the laboratory Secures wells after sampling Relocates purge and sampling water to labelled, approved containers staged at a temporary storage area

4. Associated Documents (Drawings, Manuals, Method Statements, Plans, Permits)

The table below lists the other documents relevant to the groundwater sampling activities.

Document	Reference Number
Alaska LNG Project Execution Plan	Latest Issue
Alaska Emergency Response Plan	Latest Issue
Project Contact List	Latest Issue
Water Quality Monitoring Field and Data Collection Procedures	Latest Issue
Routing Maps	Latest Issue
Groundwater Sampling Form	Latest Issue
Meter Calibration Logs	Latest Issue

METHOD STATEMENT		No:	Hydro-01	
		Page:	4 of 6	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Well Sampling		Date:	April 2016	

5. Risk Assessments

Risk assessment and Field Standard Operating Procedures for data collection activities are listed in the following table and are held on site enclosed in the Project Execution Plan.

Risk Assessment	HYD-TRA-001 Water Quality Testing, ON-GN-TRA-303 Thunder-Lightning Storms, ON-GN-TRA-311 Material Handling and Moving, ON-GN-TRA-349 Driving Off-Road
SOP	Water Quality Monitoring, Field Sample and Data Collection Procedures

6. Security - Barriers/Fences/Warning Signs

Access to the well locations will be restricted to Fugro employees, Client Representatives and Land Agents, and SLR International, the sampling subcontractor.

Wells are to be re-secured following all monitoring and sampling activities.

7. Constraints/Restrictions/Special Conditions

Monitoring and sampling activities will take place during daylight hours only.

Water Quality tests will be conducted on a combination of AKLNG and privately owned properties. The AKLNG Land Agents are responsible for obtaining a right of entry permit for each property. The Lead Field Hydrogeologist will develop a look ahead schedule with the Site Manager, who will then relay this information on to the Land Agents with a request for notification of any special Right of Entry (RoE) restrictions for the upcoming (and adjacent) parcels. During daily logistics meetings, the Field Hydrogeologist will communicate with the Site Manager on areas where work will be performed on subsequent days to ensure any special RoE restrictions are understood.

Extra precautions should be implemented in inclement weather conditions such as heavy rain and thunder/lightning storms. The instrument and all cable connectors should be protected against rain and/or surface water. During thunder/lightning storms data collection activities should cease and all cables disconnected. Further information regarding general work activities during such inclement weather can be found in Task Risk Assessment ON-GN-TRA-303 Thunder and Lightning Storms.

METHOD STATEMENT	FUGRO	No:	Hydro-01	
		Page:	5 of 6	
ALASKA LNG (AKLNG)		Issue:	1	Rev 1
Well Sampling		Date:	April 2016	6

8. Plant and Equipment

The following equipment will be used during sampling activities:

- Field transportation vehicle for staff, equipment and supplies
- Hunting cart or similar to enable transportation of equipment and supplies over difficult terrain, as necessary
- YSI 556 multi-parameter water meter equipped with a flow through cell
- LaMotte 2020e turbidimeter
- Low-flow electric pumps
- Gasoline powered generators
- Water Level Indicator
- Sampling containers
- Bailers

9. Materials (handling/storage/disposal)

Purge water will be collected and stored in buckets and pails with lids, pending transportation back to the staging area. At the staging area, the water will be transferred into 55-gallon drums which will be temporarily stored onsite pending review of the analytical data. The drums will be labelled to their content and generation data.

Disposal will be handled in coordination between the Field Hydrogeologist, Site Manager, and NRC staff.

10. Preparation of Works/Location of Services

The location of the wells to be sampled are shown on Plate 1, attached. Access routes to each well locations are depicted in following plates, attached. On a daily basis during tool box talks and JHA completion, the specific locations of the well sampling activities, along with ingress and egress routes will be discussed.

11. Emergency Procedures

Details of emergency response are incorporated in the project Specific Emergency Response Plan found in Appendix O.

The field crew will include a First Aid / CPR trained person and a first aid kit with saline eye wash will be available on site. Additionally, a roaming Wildlife Safety Specialist carrying an AED will be available to crews. Each field team will carry a card with contact numbers of key project personnel (site manager, SSHE contacts) and local facilities (fire / EMS departments, hospitals etc.). In

METHOD STATEMENT	FUGRO	No:	Hydro-01	
		Page:	6 of 6	
ALASKA LNG (AKLNG) Well Sampling		Issue:	1	Rev 1
		Date:	April 201	6

addition, at least one person per team will be registered with the Kenai Borough Council, Office of Emergency Response, Rapid Response Notification System, which provides reports of local emergency / heightened awareness situations / conditions (severe weather, earthquake, tsunami, etc.).

12. Personal Protective Equipment (PPE) & Safety Equipment

The following personal protective equipment shall be worn during operations:

Item	Description
Safety boots/shoes, hard hat and Hi-Viz vest or clothing, long-sleeved shirt and pants	Mandatory (for all site activities per Part D of the Project Execution Plan)
Gloves	As per risk assessment
Safety glasses	As per risk assessment
Ear defenders/ear plugs	Mandatory if noise above FAL 80dB(A)

Additional personal protective equipment to comply with the accompanying SDS guidelines and for unplanned site operations (such as vehicle maintenance or recovery) should be procured and readily available locally (i.e. at site office) or as deemed required by the Field Hydrogeologist and Lead Scientist, and/or Site Manager.

13. Methodology & Sequence of Work

- Open well lid
- Use a water level indicator to measure depth to water
- Remove data logger (if applicable)
- Use of down-hole water quality parameter meter
- Use of down-hole low-flow electric pumps to purge the wells and for sampling
- Generator used to power down hole pumps
- Relocation of purge water to the temporary drum storage area
- Replacement of data logger equipment (if applicable)
- Re-securing of the well head
- Transport water samples to the laboratory

24-Hour Emergency Safety Number 1-888-333-4577

TASK RISK ASSESSMENT (TRA)

WELL SAMPLING FORM NO. HYD-TRA-001

ACTIVITY:	Well Sampling	Date:	4/11/2016
Department Involved:	Hydrogeology and Subcontractors	Client:	AKLNG
Title of Person Performing Task:	Field Technician	Location of Activity:	Field

Please Remember: All hazards are important. Make notice of all possible hazards. Detailed safe job procedures are necessary. Awareness, teamwork, communications, and alertness apply to every situation. Use complete recommendations to eliminate or reduce hazards. This Task Risk Assessment is a compilation of potential hazards that should be expected while conducting this task. If actual work conditions or hazards require deviations from this Task Risk Assessment the employee must take the appropriate safety measures and document any changes to the Sequence of basic job steps, potential accidents or hazards, and recommendations to eliminate or reduce potential hazards listed or not listed in this Task Risk Assessment. Changes should be documented on the Jobsite Hazard Analysis (JHA) form. In addition, hazards associated with jobsite conditions should be documented to those involved in the task.

Description of Activity / Task: Purging and sampling of existing wells

PERSONAL PROTECTIVE EQUIPMENT:

Х	Hard Hats	Х	Fire Extinguisher	Х	Reflective Work Vest
Х	Safety Shoes		Safety Glasses w/ Side Shields		2- Life Rings w/ 90' Floating Line
Х	Hearing Protection (if>80dB)	Х	Goggles		Tag Lines
	Cotton Gloves		Face Shield		Work Permit Required
	Leather Gloves		Back Belts		Lockout/Tagout
Х	Rubber Gloves		Safety Harness		Barricade
	Welder Gloves		Floor Mat		
	Welder Helmet		Dust Mask		

WELL SAMPLING

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Control Measures	Residual Risk Rating	Risk Action
Mobilization	Trips and falls by crews Stuck vehicles/equipment Wildlife	vehicles/equipment Personnel Wildlife safety specialist onsite during prewalk vehicles/equipment Use of buddy system Ground truthing Mark access route, as needed Address trip and fall hazards of location during toolbox talks/jobsite hazard analysis Use proper PPE		C1	1	
Well Sampling	Remote well locations Removal and replacement of data logger Use of downhole field meters and pump Use of generators Electric shock Management of samples Relocation of purge water Re-securing wells	Sampling personnel Environment	C2	Use of environmentally and HSE trained practitioners Use of buddy system Follow Method Statements, SOPs, BMPs Take breaks as required Frequent Site Manager checks on staff in all locations Onsite contingency supplies and equipment to aid in retrieval of equipment downhole Generators to be placed in "duck ponds" Pump electrical cable not to be connected to electrical power until pump is in place downhole Electrical power source to be properly grounded Inspected fire extinguishers on-site	C1	1

Approved by Environmental Services Manager, Fugro Consultants, Inc., April 2016 Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

WELL SAMPLING

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Control Measures	Residual Risk Rating	Risk Action
				Spill Kits Available on-site Transportation of water only in sealed containers to secured drum staging area Provision of extra sampling containers in case of breakage		
Demobilization	Loss of Reputation	Sampling personnel Fugro	C2	Clean site properly before leaving site. Ensure hazards removed from site	C1	1

WELL SAMPLING

Risk Matrix	and Risk Act	ions			Likelihood					
Hazard severity	Reputation	Assets	Environment	People	A - Very unlikely (a freak combination of factors required for incident to result)	B - Unlikely (a rare combination of factors would be required for an incident to result	C - Possible (could happen when additional factors are present but otherwise unlikely to occur)	D - Likely (not certain to happen but an additional factor may result in an accident)	E - Very Likely (almost inevitable that an incident would result)	
1.Slight	Slight Impact	1- Slight damage, less than \$25,000 U.S.	Little or no actual or potential for damage.	1 - Slight health effect/injury (First Aid)	A1	B1	C1	D1	E1	
2.Minor	Limited Impact	2 - Minor damage, 25,000 - \$100,000 U.S.	Within site boundary, short term impact recoverable by the work site	2 - Minor health effect/ injury (RWC MTO)	A2	B2	C2	D2	E2	
3.Major	Considerable Impact	3 - Major damage, \$100,000 - \$500,000 U.S.	Beyond the site boundary unlikely to last beyond 1 month. Recovery may require external aid.	3 - Major health effect/ injury (DAWC)	A3	B3	СЗ	D3	E3	
4.Severe	National Impact	4 - Severe damage, \$500,000 - \$1,000,000 U.S.	Beyond the site boundary unlikely to last beyond 12 months. Recovery requires external aid.	4 - Permanent Total Disability or single fatality	A4	B4	C4	D4	E4	
5.Catastrophic	International Impact	5 - Extensive damage, greater than \$1,000,000 U.S.	Massive uncontrolled release with significant impact extending well beyond the site boundary.	5 - Multiple serious injuries or fatalities	A5	B5	C5	D5	E5	

reen .ow)	Acceptable (When risk reduction / control measures have been implemented). Ensure controls are maintained and manage for continuous improvement.
ellow 1edium)	Tolerable (When risk reduction / control measures have been implemented). Where possible, the work activity / task should be redefined to take account of the hazards involved or the risk should be reduced further prior to task commencement.
ed ligh)	Intolerable (Work activity / task must not proceed). It should be redefined or further control measures put in place to reduce risk. The controls should be re-assessed for adequacy prior to task commencement.

TASK RISK ASSESSMENT (TRA)

THUNDER/LIGHTNING STORMS Form No. ON-GN-TRA-303

ACTIVITY:	Working near thunder & lightning storms	Date:	3/30/15
Department Involved:	Various	Client:	AKLNG
		Location of	
Title of Person Performing Task:	Various	Activity:	Alaska

Please Remember: All hazards are important. Make notice of all possible hazards. Detailed safe job procedures are necessary. Awareness, teamwork, communications, and alertness apply to every situation. Use complete recommendations to eliminate or reduce hazards. This Task Risk Assessment is a compilation of potential hazards that should be expected while conducting this task. If actual work conditions or hazards require deviations from this Task Risk Assessment the employee must take the appropriate safety measures and document any changes to the Sequence of basic job steps, potential accidents or hazards, and recommendations to eliminate or reduce potential hazards listed or not listed in this Task Risk Assessment. Changes should be documented on the Jobsite Hazard Analysis (JHA) form. In addition, hazards associated with jobsite conditions should be documented to those involved in the task.

Description of Activity / Task:

For more info see: NOAA http://www.lightningsafety.noaa.gov/overview.htm and

The National Lightning Safety Institute http://www.lightningsafety.com/nlsi_pls.html

For more information on tornadoes see: <u>http://www.spc.noaa.gov/faq/tornado/</u>

PERSONAL PROTECTIVE EQUIPMENT:

	Hard Hats		Fire Extinguisher		Class 3 Reflective Work Vest
	Safety Shoes		Safety Glasses w/ Side Shields		2- Life Rings w/ 90' Floating Line
	Hearing Protection		Goggles		Tag Lines
	Cotton Gloves		Face Shield		Work Permit Required
	Leather Gloves		Back Belts		Lockout/Tagout
	Rubber Gloves		Safety Harness		Water for Hydration
	Welder Gloves		Floor Mat		
	Welder Helmet		Dust Mask		

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action
Conducting fieldwork in areas with risk of developing	Being struck by lightning	Employee	B5	Post a spotter to monitor developing weather and allow for enough lead time to safely shut down operations in advance of approaching storm. Consider utilizing a lightning detection device.	B2	LOW
thunderstorms.		If thunder or lightning are observed, immediately seek safe shelter. "If thunder roars, go indoors."				
				The safest place is a fully enclosed building. The roof, walls, floor, plumbing and wiring of a fully enclosed building provide pathways for the electrical current to get to ground safely (so you don't become the path!). Once inside, avoid any path that may conduct electricity such as corded phones or radios, wires, TV cables, metal doors and window frames. Stay away from and don't use plumbing and electric appliances (even computers). Do not lie on concrete floors or lean against concrete walls.		
				If a safe building is not available, seek shelter in a fully enclosed, metal topped vehicle. Do not touch any metal or use electronics, especially 2-way radios with external antennas, but also cell phones, lap top computers or GPS devices.		

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action
Conducting fieldwork in areas with risk of developing thunderstorms. (continued)	Being struck by lightning (continued)	Employee	B5	If a safe building or vehicle is not available, move to the topographically lowest nearby location. Stay away from water, wet items, metal (esp. fences), ridgelines, and tall objects such as trees. Put your feet together, crouch down into a ball, tuck your head, and cover your ears to reduce hearing damage. Only your feet should touch the ground; the objective is to be as low as possible while at the same time minimizing your contact with the ground. Keep a distance of 15 ft between people. No place outside is safe from lightning!	B2	LOW
				NOAA and the Lightning Safety Institute recommend to continue sheltering and the suspension of activities for 30 minutes after the last observed lightning or thunder because lightning can strike 10- 25 miles away from thunderstorms (i.e. "Bolts from the blue"). Be sure the threat of lightning has passed before resuming activities.		
				Using "Flash-to-bang" ratios may help estimate the proximity to lightning. For each 5 seconds from seeing lightning to hearing the associated thunder, lightning is 1 mi (1.6 km) away. (For example, a count of 10 sec = 2 miles (2.4 km); 15 sec = 3 miles; etc.) However, remember that lightning can unpredictably strike 10s of miles from a thunderstorm; move to shelter as soon as lightning is observed heading your way.		
				If Lightning victims are not electrified; they may need immediate first aid or CPR. Administer CPR and seek trained medical help immediately (only touch the individual if the electrical charge has dissipated).		

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action
Conducting fieldwork in areas with risk of developing thunderstorms. (continued)	Lightning starts a fire that spreads rapidly from thunderstorm- derived winds.	Employee	C2	Call 911 to report fire and evacuate area. Leave behind tools and equipment; they are not worth your life. If evacuation is not possible, retreat to a safety zone. Safety zones include areas with little to no flammable material or areas already burned over.	B2	LOW
	Injury from hail, including hail-induced vehicle accidents.	Employee	C2 Call 911 to report fire and evacuate area. Leave behind tools and equipment; they are not worth your life. If evacuation is not possible, retreat to a safety zone. Safety zones include areas with little to no flammable material or areas already burned over. B2 B4 Seek shelter from falling hail in stout building or fully enclosed vehicle. If driving, slow down and pull off road in safe location. Hail can reduce visibility and accumulate rapidly to depths that make driving dangerous. B2 B4 Heavy rain can reduce visibility and cause fast moving vehicles to hydroplane. Slow down and pull off road in a safe, topographically high location. Do not drive through standing water, even if looks shallow. B2 B4 Heavy rain can reduce visibility and cause fast moving vehicles to hydroplane. Slow down and pull off road in a safe, topographically high location. Do not drive through standing water, even if looks shallow. B2 B5 Discuss and decide on a plan of action before a tornado or high winds threaten. Post a spotter to monitor developing weather at your location and also the issuance of regional high wind or tornado B2	LOW		
	Heavy rain and flash floods	Employee	B4	moving vehicles to hydroplane. Slow down and pull off road in a safe, topographically high location. Do not drive through standing water, even if looks shallow.Rain falling miles away may cause flash floods that arrive at your location with little to no warning.	B2	LOW
Conducting fieldwork in areas with risk of developing thunderstorms. (continued)	High Winds and Tornados	Employee	B5	tornado or high winds threaten. Post a spotter to monitor developing weather at your location and	B2	LOW
				Do not wait until you see the tornado: seek shelter as soon as a warning is issued. The safest shelter is a basement, storm cellar, or safe room. Next best is an interior room on the lowest floor having no windows. Mobile homes and construction office trailers are not safe; abandon them. If you cannot		

Job Steps	Hazards	Population At Risk			Residual Risk Rating	Risk Action
				quickly walk to sturdy shelter, drive to shelter (with seat belt on). If flying debris occurs while you are driving, pull over and park. Now you have the following options as a last resort:		
				 Stay in the car with the seat belt on. Put your head down below the windows, covering with your hands and a blanket if possible. 		
				 If you can safely get noticeably lower than the level of the roadway, exit your car and lie in that area, covering your head with your hands. 		

Risk Matrix	and Risk Acti	ons			Likelihood				
Hazard severity	Reputation Assets Environment		People	A - Very unlikely (a freak combination of factors required for incident to result)	B - Unlikely (a rare combination of factors would be required for an incident to result	C - Possible (could happen when additional factors are present but otherwise unlikely to occur)	D - Likely (not certain to happen but an additional factor may result in an accident)	E - Very Likely (almost inevitable that an incident would result)	
1.Slight	Slight Impact	1- Slight damage, less than \$25,000 U.S.	Little or no actual or potential for damage.	1 - Slight health effect/injury (First Aid)	A1	B1	C1	D1	E1
2.Minor	Limited Impact	2 - Minor damage, 25,000 - \$100,000 U.S.	Within site boundary, short term impact recoverable by the work site	2 - Minor health effect/ injury (RWC MTO)	A2	B2	C2	D2	E2
3.Major	Considerable Impact	3 - Major damage, \$100,000 - \$500,000 U.S.	Beyond the site boundary unlikely to last beyond 1 month. Recovery may require external aid.	3 - Major health effect/ injury (DAWC)	A3	В3	C3	D3	E3
4.Severe	National Impact	4 - Severe damage, \$500,000 - \$1,000,000 U.S.	Beyond the site boundary unlikely to last beyond 12 months. Recovery requires external aid.	4 - Permanent Total Disability or single fatality	A4	B4	C4	D4	E4
5.Catastrophic	International Impact	5 - Extensive damage, greater than \$1,000,000 U.S.	Massive uncontrolled release with significant impact extending well beyond the site boundary.	5 - Multiple serious injuries or fatalities	A5	В5	C5	D5	E5

Green (Low)	Acceptable (When risk reduction / control measures have been implemented). Ensure controls are maintained and manage for continuous improvement.
Yellow (Medium)	Tolerable (When risk reduction / control measures have been implemented). Where possible, the work activity / task should be redefined to take account of the hazards involved or the risk should be reduced further prior to task commencement.
Red (High)	Intolerable (Work activity / task must not proceed). It should be redefined or further control measures put in place to reduce risk. The controls should be re-assessed for adequacy prior to task commencement.

24-Hour Emergency Safety Number 1-888-333-4577

TASK RISK ASSESSMENT(TRA)

MATERIAL HANDLING-MOVING AND STACKING MATERIALS Form ON-GN-TRA-311

ACTIVITY:	Material Handling-Moving and	Date:	3/30/15
	Stacking Materials		
Department Involved:	All	Client:	AKLNG
Title of Person Performing Task:	Technician	Location of Activity:	Alaska

Please Remember: All hazards are important. Make notice of all possible hazards. Detailed safe job procedures are necessary. Awareness, teamwork, communications, and alertness apply to every situation. Use complete recommendations to eliminate or reduce hazards. This TRA is a compilation of potential hazards that should be expected while conducting this task. If actual work conditions or hazards require deviations from this TRA, the employee must take the appropriate safety measures and document any changes to the Sequence of basic job steps, potential accidents or hazards, and recommendations to eliminate or reduce potential hazards listed or not listed in this TRA. Changes should be documented on the Jobsite Hazard Analysis (JHA) form. In addition, hazards associated with jobsite conditions should be documented on the JHA and communicated to those involved in the task.

Description of Activity / Task:

PERSONAL PROTECTIVE EQUIPMENT:

	Hard Hats		Fire Extinguisher	Х	Reflective Work Vest (if applicable)
Х	Safety Shoes (if applicable)	Х	Safety Glasses w/ Side Shields		2- Life Rings w/ 90' Floating Line
	Hearing Protection		Goggles		Tag Lines
Х	Cotton or Leather Gloves		Face Shield		Work Permit Required
	Leather Gloves	Х	Back Belts (as needed)		Lockout/Tagout
	Rubber Gloves		Safety Harness	Х	Barricades
	Welder Gloves		Floor Mat		
	Welder Helmet		Dust Mask		

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action	
Preparing area where materials	Hand Injuries	Employee	C2	Lift objects in a manner to avoid sharp or excess pressure on the hands.	B2	LOW	
will be moved to				Wear leather or cotton gloves to prevent splinters while positioning pallet that will hold materials.			
				Wear leather or cotton gloves while clearing area the materials will be placed to prevent cuts and scrapes.			
	Foot Injuries	Employee	C3	Keep feet/legs out of the drop zone of objects.	B2	LOW	
			Wear steel toed work boots while clearing area the materials will be placed to protect feet if objects are dropped.				
	Slips/Trips/Falls	Employee	C2	Clear path of travel involved in the moving of materials to prevent trips/falls.	A2	LOW	
				Check path of travel for liquid spills or granular material on the ground and clean up before moving materials to prevent slips.			
				Check path of travel for uneven working surfaces before moving materials to prevent trips/falls.			
				Cleanup or move any items that may become a hazard during the move. Select a different route if hazards cannot be mitigated.			
				Make sure soles of shoes have appropriate non slip tread.			
	Other employees entering area where materials are being transferred	Employee	C2	Place a soft barricade around area, where applicable.	B2	LOW	

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action
Preparing area where materials will be moved to (continued)	Inhalation/Eye Contamination	Employee B3		Consult MSDS/SDS for all materials to be moved, if applicable. Wear a dust mask if bags are broken or materials may become airborne. Wear goggles if the potential exists for materials to be splashed/blown into eyes.	A2	LOW
	Materials not sufficiently supported causing failure	Employee	B2	Check the weight capacity of the storage area where the materials will be moved. Examples: shelves, tables, pallets, vehicle	A2	LOW
				Stack materials on waist level shelves when possible		
Moving Materials	Back Strains/Injuries	Employee	C3	Refer to HS-R41 Lifting Guidelines before beginning lifting activity.	B2	LOW
				Restrict single person manual lifts to < 50 lbs. Get help moving heavy, oversized, or odd shaped items.		
				Avoid manually moving office furniture and equipment. A third party moving company shall be used to move / transport furniture / large equipment.		
				When moving large objects on a dolly, secure object to dolly to prevent the object from falling/sliding off. If item begins to fall, do not attempt to stop the item from falling. Move out of the way to prevent injury.		
				Report any pre-existing back related injuries to management before completing any lift.		
				Perform stretching exercises prior to lifting.		
				Wear back-belts (optional) for heavy or repetitive motions performed over a long period of time.		
				Position yourself close to the object to be lifted. Use your legs to lift instead of your back. Do not bend or twist at the waist during the lift.		
				Take breaks as necessary.		

Approved by QHSE Manager, Fugro Consultants, Inc., August 2014 Note: If this is a printed or downloaded copy, please check the online OHSE-MS to ensure that it is the latest version.

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action
Moving Materials (continued)	Foot/Leg Injuries from falling materials	Employee	C3	Stack materials orderly and only as high as materials can be stacked safely.	B2	LOW
				Wear cotton or leather gloves to increase grip on items being carried.		
				Wear steel toed work boots while moving materials to protect feet if objects are dropped.		
	Hand Injuries	Employee	C3	Make sure hand, fingers, or other body parts are out of line of fire or pinch points before placing materials down.	B2	LOW
				Wear leather or cotton gloves while moving materials to prevent cuts and scrapes.		
After Completing	Slips, Trips, Falls	Employee	C2	Clear and store all barricading devices.	A2	LOW
Move	Perform housekeeping activities in the area that the materials were moved from, and area where materials were placed.					
	Potential hazards	Employee	C3	STOP and observe for potential hazards that can possibly be addressed before leaving.	B2	LOW

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Controls Measures	Residual Risk Rating	Risk Action
Moving Materials (continued)	Hand Injuries	Employee	C3	Make sure hand, fingers, or other body parts are out of line of fire or pinch points before placing materials down. Wear leather or cotton gloves while moving materials to prevent cuts and scrapes.	B2	LOW
After Completing Move	Slips, Trips, Falls	Employee	C2	Clear and store all barricading devices. Perform housekeeping activities in the area that the materials were moved from and area where materials were placed.	A2	LOW
	Potential hazards	Employee	C3	STOP and observe for potential hazards that can possibly be addressed before leaving.	B2	LOW

Risk Matrix	and Risk Acti	ons			Likelihood				
Hazard severity	Reputation Assets Finvironme		Environment	People	A - Very unlikely (a freak combination of factors required for incident to result)	B - Unlikely (a rare combination of factors would be required for an incident to result	C - Possible (could happen when additional factors are present but otherwise unlikely to occur)	D - Likely (not certain to happen but an additional factor may result in an accident)	E - Very Likely (almost inevitable that an incident would result)
1.Slight	Slight Impact	1- Slight damage, less than \$25,000 U.S.	Little or no actual or potential for damage.	1 - Slight health effect/injury (First Aid)	A1	B1	C1	D1	E1
2.Minor	Limited Impact	2 - Minor damage, 25,000 - \$100,000 U.S.	Within site boundary, short term impact recoverable by the work site	2 - Minor health effect/ injury (RWC MTO)	A2	B2	C2	D2	E2
3.Major	Considerable Impact	3 - Major damage, \$100,000 - \$500,000 U.S.	Beyond the site boundary unlikely to last beyond 1 month. Recovery may require external aid.	3 - Major health effect/ injury (DAWC)	A3	В3	C3	D3	E3
4.Severe	National Impact	4 - Severe damage, \$500,000 - \$1,000,000 U.S.	Beyond the site boundary unlikely to last beyond 12 months. Recovery requires external aid.	4 - Permanent Total Disability or single fatality	A4	B4	C4	D4	E4
5.Catastrophic	International Impact	5 - Extensive damage, greater than \$1,000,000 U.S.	Massive uncontrolled release with significant impact extending well beyond the site boundary.	5 - Multiple serious injuries or fatalities	A5	B5	C5	D5	E5

Green (Low)	Acceptable (When risk reduction / control measures have been implemented). Ensure controls are maintained and manage for continuous improvement.
Yellow (Medium)	Tolerable (When risk reduction / control measures have been implemented). Where possible, the work activity / task should be redefined to take account of the hazards involved or the risk should be reduced further prior to task commencement.
Red (High)	Intolerable (Work activity / task must not proceed). It should be redefined or further control measures put in place to reduce risk. The controls should be re-assessed for adequacy prior to task commencement.

TASK RISK ASSESSMENT (TRA) DRIVING OFF ROAD 24-Hour Emergency Safety Number ON-GN-TRA-349 1-888-333-4577 **ACTIVITY:** Driving off of paved roads 3/30/15 Date: AKLNG Department Involved: Client: Various Title of Person Performing Task: Alaska Approved Driver Location of Activity:

Please Remember: All hazards are important. Make notice of all possible hazards. Detailed safe job procedures are necessary. Awareness, teamwork, communications, and alertness apply to every situation. Use complete recommendations to eliminate or reduce hazards. This Task Risk Assessment is a compilation of potential hazards that should be expected while conducting this task. If actual work conditions or hazards require deviations from this Task Risk Assessment the employee must take the appropriate safety measures and document any changes to the Sequence of basic job steps, potential accidents or hazards, and recommendations to eliminate or reduce potential hazards listed or not listed in this Task Risk Assessment. Changes should be documented on the Jobsite Hazard Analysis (JHA) form. In addition, hazards associated with jobsite conditions should be documented to those involved in the task.

Description of Activity / Task:

PERSONAL PROTECTIVE EQUIPMENT:

	Hard Hats			Fire Extinguisher				Reflective Work Vest
	Safety Shoes			Safety Glasses w/ Side Shields				2- Life Rings w/ 90' Floating Line
	Hearing Protection		Goggles Tag Lines		Tag Lines			
	Cotton Gloves			Face Shield	Work Permit Required		Work Permit Required	
	Leather Gloves			Back Belts				Lockout/Tagout
	Rubber Gloves			Safety Harness				Barricade
	Welder Gloves			Floor Mat		Х		Seatbelt
	Welder Helmet			Dust Mask		Х		Vehicle Recovery Gear (possible)

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Control Measures	Residual Risk Rating	Risk Action	
Drive to jobsite Traffic accident Once on site potential accident with heavy equipment or pedestrian		Employee Public Asset	A5	Practice defensive driving. Review GP-310Vehicle Usage.While on site particular care should be used by following the site specific speed limits and traffic signs.Obey all site posted warning and regulation signs.	C2	LOW	
Pre start-up inspection	Vehicle failure	Employee Public Asset	A5	Check tire pressure, pedals, fluids, brakes, lights, suspension, horn, etc. in accordance with owner's manual instructions prior to starting the vehicle.	A3	LOW	
Driving the vehicle	Losing control of the vehicle	Employee Asset	A5	Do not exceed speeds that are safe for the terrain. GO SLOW OFF ROAD. Drive on well defined trails or dirt roads whenever possible. Avoid off trail driving (i.e., "trailblazing") whenever possible. When going down hills keep the engine running and in gear, apply the brake and avoid sharp turns. Heavy loads affect the safety and stability of the vehicle. Always use caution when moving or towing heavy loads. Employees should be trained in off-road driving techniques, where available.	A3	LOW	

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Control Measures	Residual Risk Rating	Risk Action
Driving the vehicle (continued)	Colliding with vehicle, person or object	Employee Public Asset	A5	Observe local laws and regulations at all times. Be alert for obstacles - always look in the direction of travel. Maintain an adequate space cushion between yourself and other vehicles. Remember that pedestrians and animals are unpredictable in their movement.	A3	LOW
	Four Wheel Drive (4WD) Operation	Employee Public Asset	A5	 Only use 4WD when needed. Consult vehicle owner's manual if driver is unfamiliar with vehicle specific steps for switching from 2WD to 4WD. Learn your vehicle. Follow all vehicle specific steps to switch from 2WD to 4WD. Operate vehicle in 4WD (high) for most off road driving conditions. Only operate in 4WD (low) when absolutely needed (e.g. climbing or descending steep hills). If driver anticipates needing 4WD (low) for the immediate section of road/trail ahead, make sure to switch into 4WD (low) prior to entering the difficult section. Absolutely no dry-pavement on road driving in 4WD (low). Use a relaxed and upright driving position with a loose grip on the steering wheel; keep thumbs out of the center section of the wheel, thus avoiding broken thumbs from steering wheel kickback. Check the area in which off-road travel is planned. Review local maps (if available). If in doubt, exit vehicle and scout the terrain ahead on foot. Does the vehicle have enough clearance for any obstacles in the path ahead? 	A3	LOW

Job Steps	Hazards	Population At Risk	Initial Risk Rating	Control Measures	Residual Risk Rating	Risk Action
Driving the vehicle (continued)	Four Wheel Drive (4WD) Operation	Employee Public Asset	A5	Be aware of changing weather conditions. If heavy rain occurs move out of washes and low lying areas on the desert floor and head to high ground whenever possible. Avoid crossing flooded washes, wait for water flow to stop before deciding to move across a flooded wash. If you don't want to swim it, don't drive into it. Avoid stream crossings if possible. Do not drive across streams deeper than 12 inches. If a stream crossing is necessary, survey the crossing first: 1) What are the bottom conditions? Mud? Rocks? Traction or no traction? 2) What is the maximum water depth? 3) How fast is the water flowing? 4) Is there an accessible exit point across the stream? Do not drive against the current, cross at a right angle to the flow, or angle downstream to the opposite bank. Begin slowly and keep a steady speed while crossing. When in doubt, opt out.	A3	LOW
	Vehicle getting stuck	Employee Asset	В3	Avoid driving through areas where becoming stuck is a potential. Drive with another vehicle present, when possible. Carry a recovery bag with slings, shackles, and a shock arrestor if the chance of getting stuck is high. Only attempt to remove a vehicle if you are properly trained and risks have been adequately mitigated.	B2	LOW

Risk Matrix and Risk Actions				Likelihood					
Hazard severity	Reputation	Assets	Environment	People	A - Very unlikely (a freak combination of factors required for incident to result)	B - Unlikely (a rare combination of factors would be required for an incident to result	C - Possible (could happen when additional factors are present but otherwise unlikely to occur)	D - Likely (not certain to happen but an additional factor may result in an accident)	E - Very Likely (almost inevitable that an incident would result)
1.Slight	Slight Impact	1- Slight damage, less than \$25,000 U.S.	Little or no actual or potential for damage.	1 - Slight health effect/injury (First Aid)	A1	B1	C1	D1	E1
2.Minor	Limited Impact	2 - Minor damage, 25,000 - \$100,000 U.S.	Within site boundary, short term impact recoverable by the work site	2 - Minor health effect/ injury (RWC MTO)	A2	B2	C2	D2	E2
3.Major	Considerable Impact	3 - Major damage, \$100,000 - \$500,000 U.S.	Beyond the site boundary unlikely to last beyond 1 month. Recovery may require external aid.	3 - Major health effect/ injury (DAWC)	A3	В3	C3	D3	E3
4.Severe	National Impact	4 - Severe damage, \$500,000 - \$1,000,000 U.S.	Beyond the site boundary unlikely to last beyond 12 months. Recovery requires external aid.	4 - Permanent Total Disability or single fatality	A4	B4	C4	D4	E4
5.Catastrophic	International Impact	5 - Extensive damage, greater than \$1,000,000 U.S.	Massive uncontrolled release with significant impact extending well beyond the site boundary.	5 - Multiple serious injuries or fatalities	A5	B5	C5	D5	E5

Green (Low)	Acceptable (When risk reduction / control measures have been implemented). Ensure controls are maintained and manage for continuous improvement.
Yellow (Medium)	Tolerable (When risk reduction / control measures have been implemented). Where possible, the work activity / task should be redefined to take account of the hazards involved or the risk should be reduced further prior to task commencement.
Red (High)	Intolerable (Work activity / task must not proceed). It should be redefined or further control measures put in place to reduce risk. The controls should be re-assessed for adequacy prior to task commencement.

Two groundwater sampling events will be conducted in 2016 following routine/standard operating procedures. The first event, in April 2016, will sampling twelve (12) existing monitoring wells and up to 3 3rd-party wells (if accessible), and the second sample event, in July/August 2016, will include sampling the original twelve (12) existing monitoring wells, plus seven (7) additional wells installed to support the Aquifer Pump Testing (APT) activities and up to five (5) samples collected from 3rd-party wells in the area. Existing monitoring and 3rd-party wells are shown on Plate 1. APT activity and 3rd-party wells are shown on Plate 2. Route maps to each well area are also attached.

Well water samples will be tested for various water quality analytes including those to assess general groundwater quality or water supply quality. Well locations are shown on the attached Plate 1. The attached Table 1 identifies the wells to be sampled during the two events and the suite of testing to be conducted. The attached Tables 2 and 3 present the analytical suites and quality assurance testing to be conducted.

Field staff involved with monitoring activities will include the field hydrogeologist of Fugro, and SLR International (SLR) environmental scientists. All field staff are considered trained environmental professionals well versed in water sampling. All staff will follow project required HSE practices and requirements.

Field well purging and sampling data will be collected on a daily basis and will document the activities conducted at each well location. Samples will remain iced or refrigerated following sampling and until delivery to the analytical laboratory. Chain of custody documents will accompany all samples to the analytical laboratory. Forms to be used during the events are attached.

Water level data recordation will be periodically downloaded by Fugro field staff and provided to the field hydrogeologist during 2016.

Details of well purging and sampling activities for existing and new wells are described below. Purging and sampling of Third-Party wells do differ from some of the details presented and notes will be added accordingly.

- Fugro will direct and oversee the activities of SLR International, a local environmental consulting firm which will conduct the field well purging and sampling activities. SLR will contract manage the sample delivery logistics with the analytical laboratory (SGS Anchorage). SLR will pick up the sample kits from SGS and transport them to the project site. After sampling, SLR will ship the samples via air freight to the laboratory with proper preservation and chain of custody (COC). SGS will pick up the samples at the airport (SLR will notify SGS of the shipment and anticipated timing of delivery).
- The field sampling team will consist of 2 to 3 SLR field scientists, 2 for the first event and 3 for the second event. The third scientist for the second event will be responsible for collecting fecal coliform samples, and transporting them to the airport for shipping each morning in order to meet an eight-hour post-sampling holding time. During afternoons or evenings, samples will be packaged for shipment, shipping paperwork (including COCs) completed, and sampling or logistics for the next day determined.

- Prior to starting each event, water level data will be collected by Fugro from all existing monitoring wells installed by Fugro that have dedicated dataloggers installed. Following data collection, Fugro will confer with AKLNG to confirm the wells to be sampled during each event. Should sufficient groundwater volume be observed within wells MW-77B or MW-91B; one of those wells may be considered for sampling, in lieu of well MW-14B.
- Industry-standard sampling protocol will be employed during purging and sampling of the monitoring, and pumped and observation wells in accordance with ASTMD 5903/4448 and ADEC guidelines. All equipment used down a well will be cleaned prior to each use. Prior to sampling, the depth to water will be measured in each well to be sampled and then the well will be purged at a rate of approximately 0.1 to 0.5 liters per minute using a variable speed, low-flow submersible impeller pump. Water levels will be checked periodically to monitor drawdown as a guide to manage flow rate. The objective will be to maintain a minimal drawdown (< 0.33 feet) during purging. Samples will be obtained using the low-flow pump.
- Water quality parameters [oxidation-reduction potential (ORP), pH, specific conductance, temperature, and dissolved oxygen (DO)] will be monitored during purging using a YSI 556 multi-parameter water meter equipped with a flow through cell. Turbidity will be measured using a LaMotte 2020e turbidimeter. The YSI multimeter and LaMotte turbidimeter will be calibrated daily, and calibration records retained and checked for verification of proper calibration. Field logs will be used to record field parameters, and document purging. Water quality measurements will be taken every three to five minutes. Purging will be considered complete once water quality parameters have stabilized. Parameters will be considered stable when three successive discrete measurements for at least three parameters (four if temperature is included), are within the following criteria (limits):
 - Temperature (°C), \pm 3% (minimum of \pm 0.2 °C);
 - \circ pH, ± 0.1 standard units;
 - Specific conductance, ±3% percent;
 - Dissolved oxygen (DO), ± 10%;
 - Oxidation/Reduction Potential (ORP), ± 10 millivolts; and
 - Turbidity, 10% for values greater than 5 NTU, if three values are less than 5 NTU, values are considered stabilized.
- If a well is low yield and purged dry, a sample will not collected until it has recharged to approximately 80% of its pre-purge volume, when practical. In this case, the well typically would be allowed to recharge and sampled the next day (without achieving stable parameters). Should they occur, these circumstances would be documented in field notes or logs.
- It is anticipated that purging will require approximately 30 minutes per well, pumping at 0.5 liters per minute, which equates to 15 liters per well (or 4 gallons). Total purge water

volume for 12 wells is anticipated to be 48 gallons (for the first event) and for 19 wells the volume is expected to be 76 gallons (for second event).

- For Third-Party wells, the wells will be purged by activating the well pumps and allowing water at the well head and prior to any treatment, for a period of 20 to 30 minutes while taking water quality parameter measurements. Once measurements appear to stabilize water samples will be obtained from the stream of water. If no pumps are present within the Third-Party wells, the wells will be sampled as per monitoring well procedures (described above).
- Samples will be analyzed on a standard turn-around basis. There are some analyses with short holding times (8 to 48 hours) which will require special handling in order to meet their respective holding times. Chlorophyll samples will be field filtered and frozen by SGS in Anchorage to extend the hold time from 48 hours to 3 weeks. Ortho-phosphate, turbidity and fecal coliform samples received on the weekends will be processed and analyzed to meet hold times, with other samples being stored in a cooler at the lab until analyses can be completed during standard business hours (Monday- Friday). As noted above, fecal coliform samples will be collected in the morning from wells purged and sampled the previous day, and shipped to the lab for analysis that afternoon to meet the 8 hour hold time. There is typically a flight about every 2 hours from Kenai to Anchorage and the flight takes about 30 minutes. There will be close coordination with the air carrier and lab to minimize any delays. However, it is possible flights will be delayed due to weather or other factors. In these cases, the samples can either be re-collected or qualified accordingly (AK LNG would be notified in any such case to determine the preferred approach).
- Quality assurance samples will be collected and analyzed as indicated on the attached tables. Duplicate samples will be collected at a frequency of 10% of the primary samples, and MS/MSDs at a frequency of 5% per sample event for spikeable parameters. Trip blanks will accompany each sample shipment (cooler) containing samples for VOC analysis. During the first sample event, an equipment blank will be collected and analyzed for total metals (e.g., tubing) and a filter blank (tubing and filter) will be collected and analyzed for dissolved metals. The same tubing and filter lots will be used for subsequent sample events (or additional blank(s) will be run for each lot used). Approximately 1 Liter of water/sample will be run through tubing and filters prior to blank and sample collection, as practical.

Data QC and submittals

The following documentation for a sampling event will be generated and included in the Groundwater Quality Monitoring Event Reports prepared for each event:

- Copies of field logs and notes.
- A data table (Excel spreadsheet) with field parameters (pH, specific conductance, DO, temperature, ORP, and turbidity).

- A data table with laboratory results, and data qualifiers. Results will be screened against Alaska Department of Environmental Conservation (ADEC) groundwater cleanup levels (18 AAC 75.345, Table C) and any exceedances noted (by color coding). Changes to these cleanup levels are proposed by ADEC and anticipated to take in the summer of 2016. Therefore, the data will be screened against the current and proposed groundwater cleanup levels.
- A data quality assurance summary report and checklist for each work order following ADEC guidance (<u>http://dec.alaska.gov/spar/csp/guidance/amga/lab-data-review-checklist.pdf</u>) and <u>http://dec.alaska.gov/spar/csp/guidance/tm_lab_ga.pdf</u>)
- Laboratory data results package.

Well Id	April Sampling Event General Groundwater Quality Suite (Table 2)	July/August Sampling Event Water Supply Quality Suite (Table 3)
MW-27B	X ¹	X ¹
MW-39A	Х	Х
MW-39B	Х	Х
MW-50A	Х	Х
MW-50B	Х	Х
MW-62A	Х	Х
MW-74A	Х	Х
MW-74B	Х	Х
MW-82A	Х	Х
MW-82B	Х	Х
MW-87B	X ¹	X ¹
MW-91A	Х	Х
APT-1		X ¹
APT-2		X ¹
APT-3		X ¹
OW-1		X ¹
OW-2		X ¹
OW-3		X ¹
OW-4		X ¹
Third Party W-1	X ¹	X ¹
Third Party W-2 (Decker)	X ¹	X ¹
Third Party W-5		Х
Third Party Well (PQW-1)	X1	X ¹

Table 1: Groundwater Quality Sampling Schedule

Note: ¹ = Samples additionally analyzed and reported per ADEC requirements for TAH (BTEX) and TAqH (PAH).

Parameter	Method	Duplicates
Water Quality Suite		
Hardness	SM21 2340B	1/10
Alkalinity	SM21 2320B	1/10
Nitrate/Nitrite	SM21 4500NO3-F	1/10
Total Dissolved Solids (TDS)	2540C	1/10
Total Suspended Solids (TSS)	2540D	1/10
Turbidity	SM21 2130B	1/10
Chloride, Sulfate, Flouride	EPA 300.0	1/10
рН	4500-H	1/10
Metals (total and dissolved)		
Total Metals – As, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Na, Ni, Tl, Sb, Se, V, Zn,	EPA 200.8	1/10
Total Mercury	EPA 1631E	1/10
Dissolved Metals – An, As, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Na, Ni, Sb, Se, Tl, V, Zn	EPA 200.8	1/10
Dissolved Mercury	EPA 1631E	1/10
<u>Organics</u>		
Volatile Organic Compounds	EPA 8260B	1/10
Semi-Volatile Organic Compounds	EPA 8270D	1/10
Petroleum Hydrocarbons		
Gasoline Range Organics	AK 101	1/10
Diesel Range Organics	AK 102	1/10
Residual Range Organics	AK 103	1/10

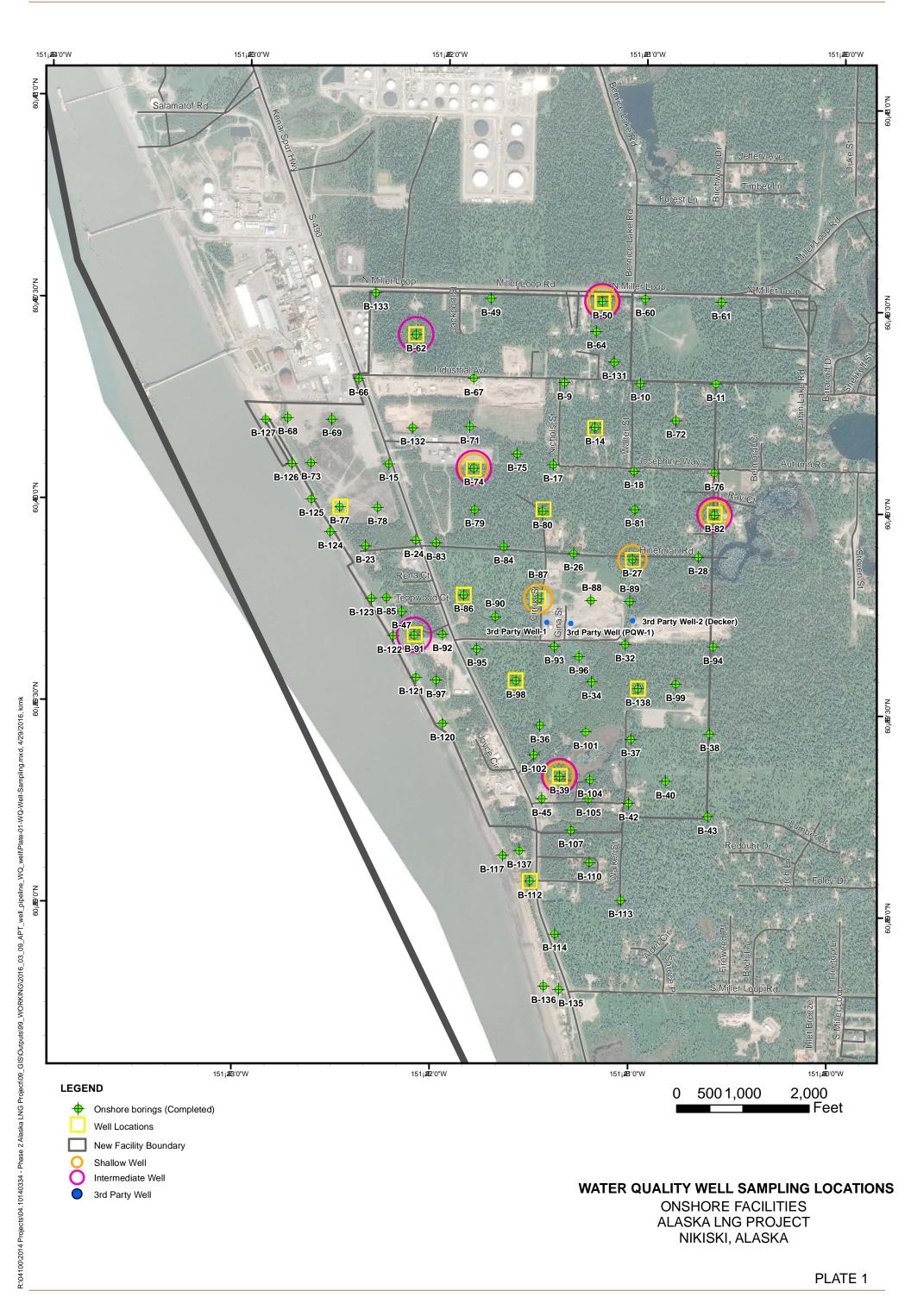
Table 2: General Groundwater Quality Suite

Note: "1/10" indicates one duplicate for every 10 samples taken; 11 samples requires two duplicates.

Parameter	Method	Duplicates	MS	MSD	тв
Water Quality Suite					
Hardness	SM21 2340B	1/10	1/20	1/20	
Alkalinity	SM21 2320B	1/10	1/20	1/20	
Nitrate/Nitrite	SM21 4500NO3-F	1/10	1/20	1/20	
Ammonia as Nitrogen	SM21 4500NH3-F	1/10	1/20	1/20	
Total Kjeldahl Nitrogen (TKN)	SM21 4500N D	1/10	1/20	1/20	
Total Phosphorous	SM21 4500-PE/PB	1/10	1/20	1/20	
Ortho-phosphate	SM21 4500P-E	1/10	1/20	1/20	
Chlorophyll a	10300	1/10	1/20	1/20	
Total Dissolved Solids (TDS)	2540C	1/10	1/20	1/20	
Total Suspended Solids (TSS)	2540D	1/10	1/20	1/20	
Turbidity	SM21 2130B	1/10	1/20	1/20	
Total Organic Carbon (TOC)	SM 21 5310B	1/10	1/20	1/20	
Dissolved Organic Carbon (DOC)	SM21 5310B	1/10	1/20	1/20	
Chemical Oxygen Demand (COD)	EPA 410.4	1/10	1/20	1/20	
Chloride, Sulfate, Flouride	EPA 300.0	1/10	1/20	1/20	
pH	4500-H	1/10	1/20	1/20	
Total Residue	SM21 2540B	1/10	1/20	1/20	
Fecal Coliform	SM21 9222D	1/10	1/20	1/20	
Metals (total and dissolved)					
Total Metals – As, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Na, Ni, Tl, Sb, Se, V, Zn	EPA 200.8	1/10	1/20	1/20	
Total Mercury	EPA 1631E	1/10	1/20	1/20	
Total Mercury Trip blank	EPA 1631E				1/8
Dissolved Metals – As, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Na, Ni, Sb, Se, Tl, V, Zn	EPA 200.8	1/10	1/20	1/20	
Dissolved Mercury	EPA 1631E	1/10	1/20	1/20	
Dissolved Mercury Trip blank	EPA 1631E				1/8
Organics					
Volatile Organic Compounds	EPA 8260B	1/10	1/20	1/20	
VOCs Trip blank	EPA 8260B				1/8
Semi-Volatile Organic Compounds	EPA 8270D	1/10	1/20	1/20	

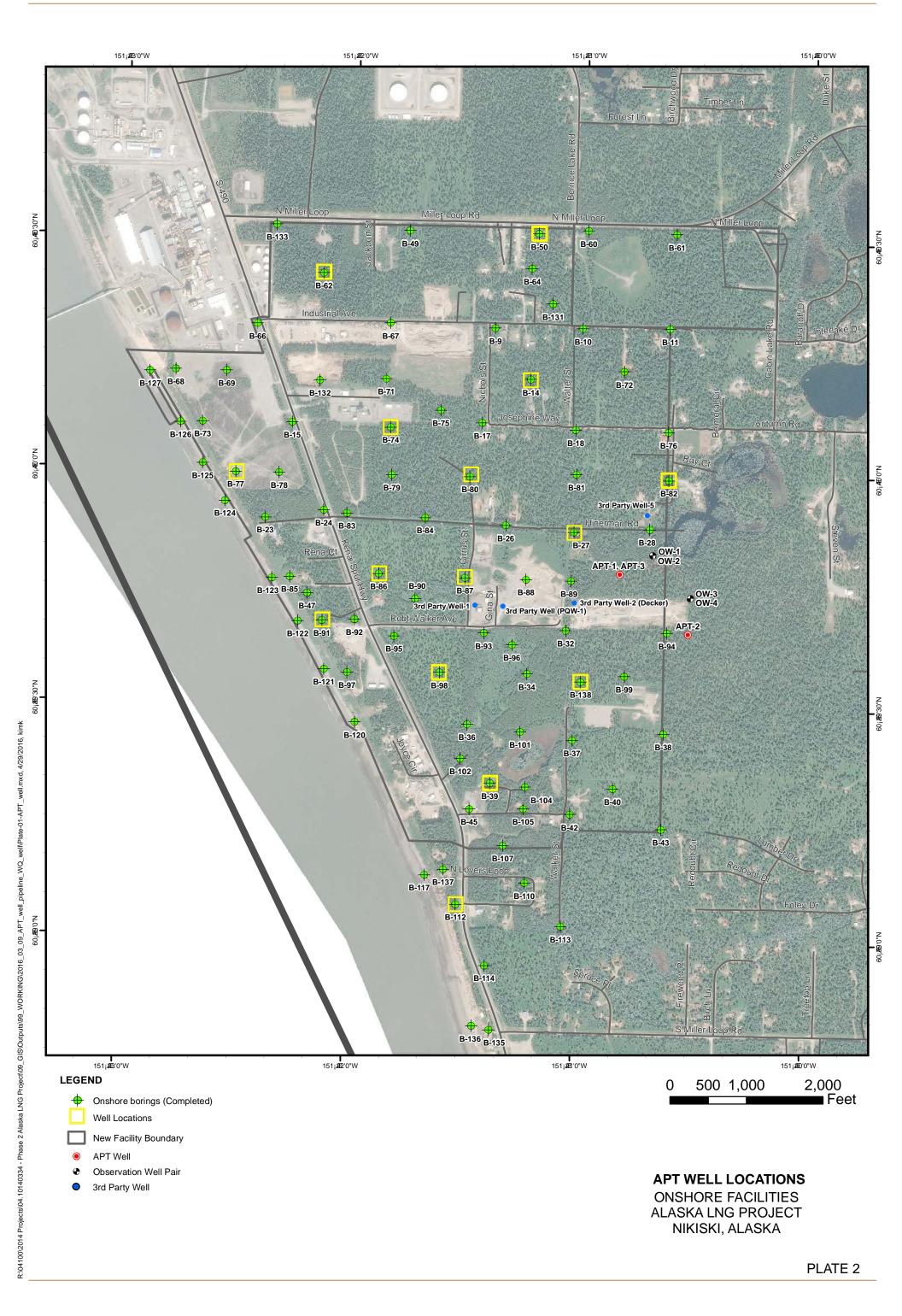
Table 3: Water Supply Quality Suite

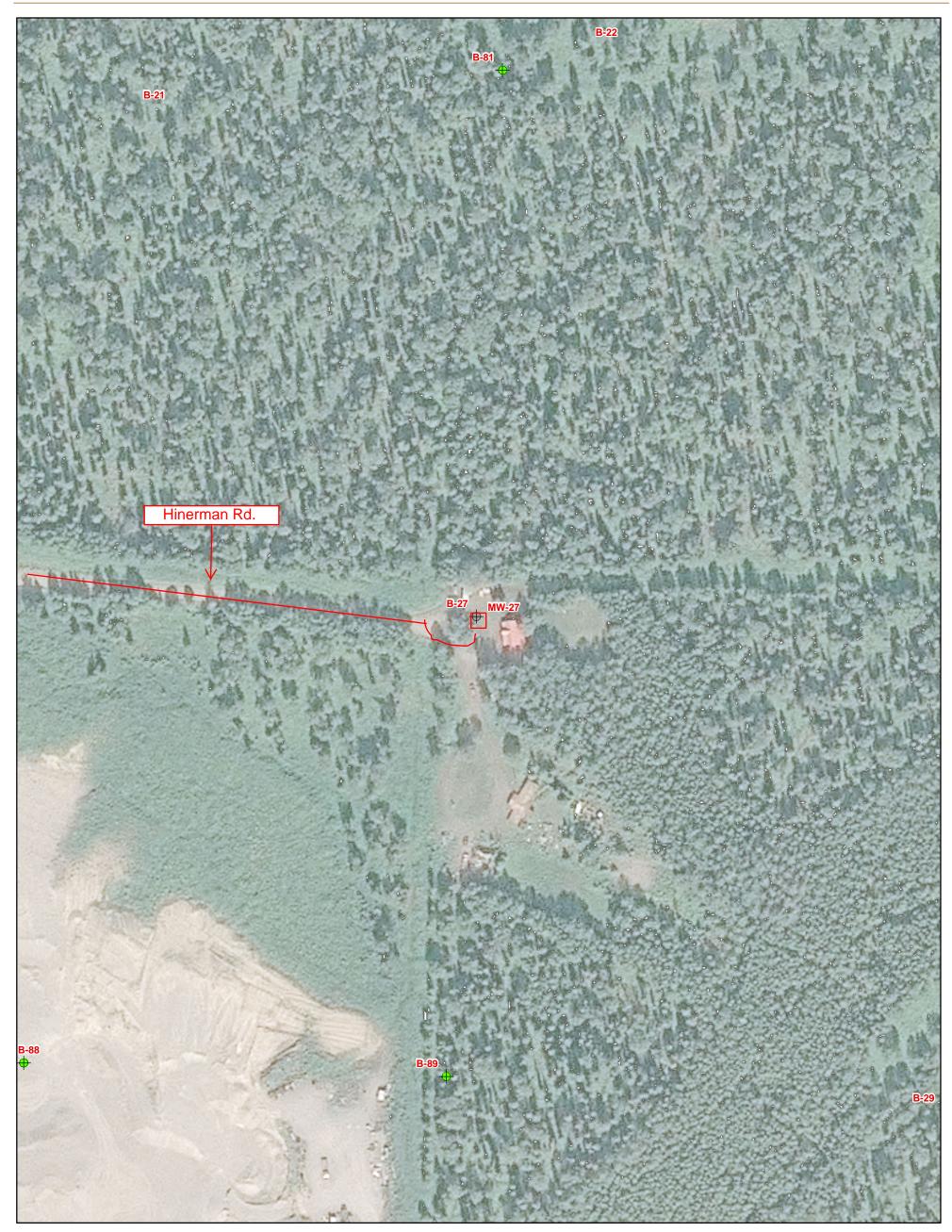
Parameter	Method	Duplicates	MS	MSD	ТВ
Polychlorinated biphenyls	EPA 8082	1/10	1/20	1/20	
Pesticides	EPA 8270D SIMS	1/10	1/20	1/20	
Petroleum Hydrocarbons					
Gasoline Range Organics	AK 101	1/10	1/20	1/20	
GRO Trip blank	AK 101				1/8
Diesel Range Organics	AK 102	1/10	1/20	1/20	
Residual Range Organics	AK 103	1/10	1/20	1/20	


Notes:

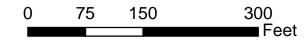
MS refers to "Matrix Spike" and provides the number of samples required per the number of primary samples. MSD refers to "Matrix Spike Duplicate" and provides the number of samples required per the number of primary samples.

TB refers to "Trip Blank" and provides the number of samples required per the number of primary samples.


Project No. 04.10160001



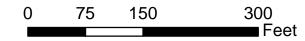
Project No. 04.10160001



Legend

- mw_20160411 selection
- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

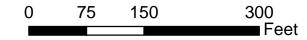
MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA



Legend

- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

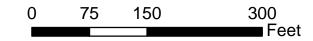
MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA



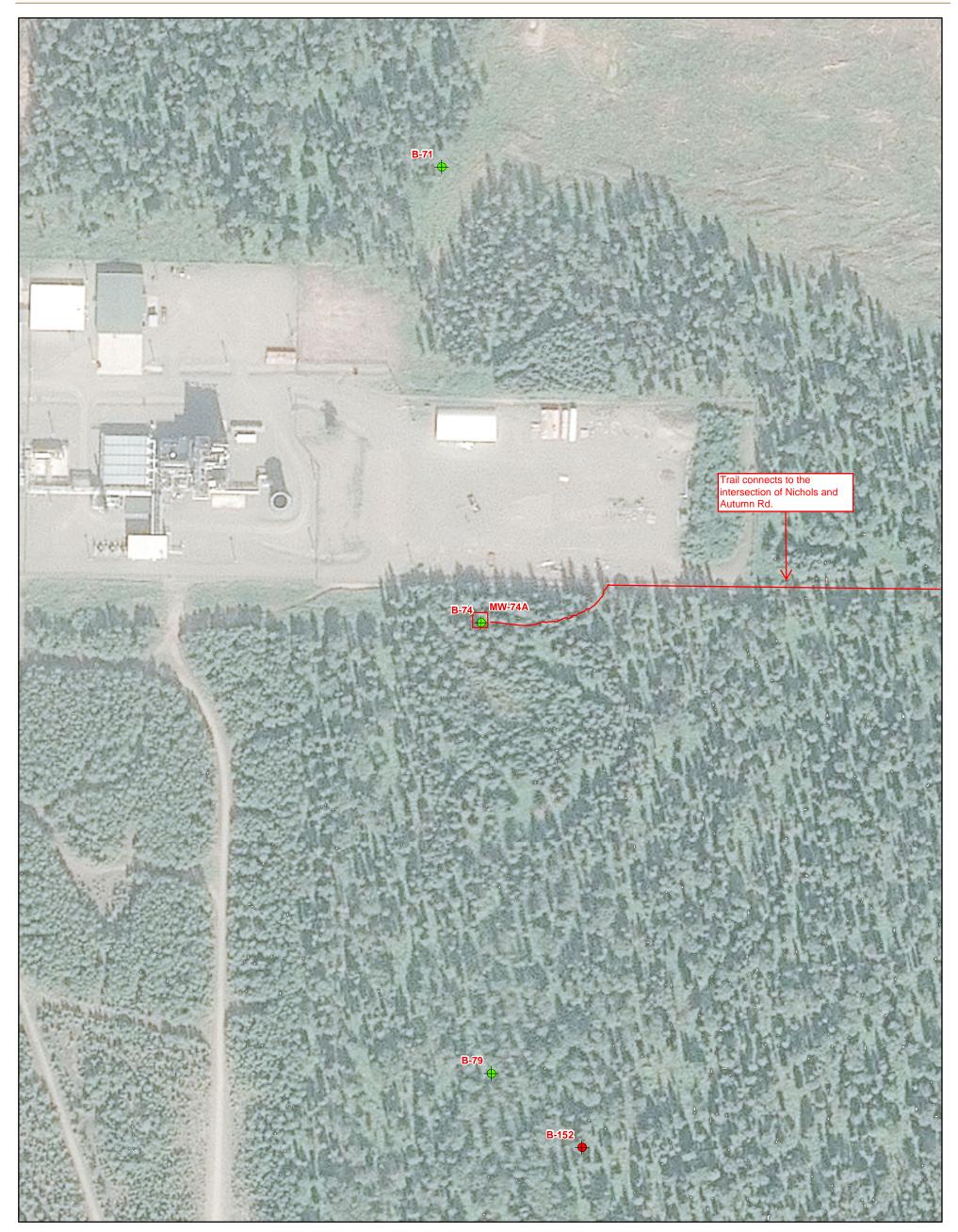
Legend

- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA

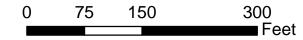


Legend

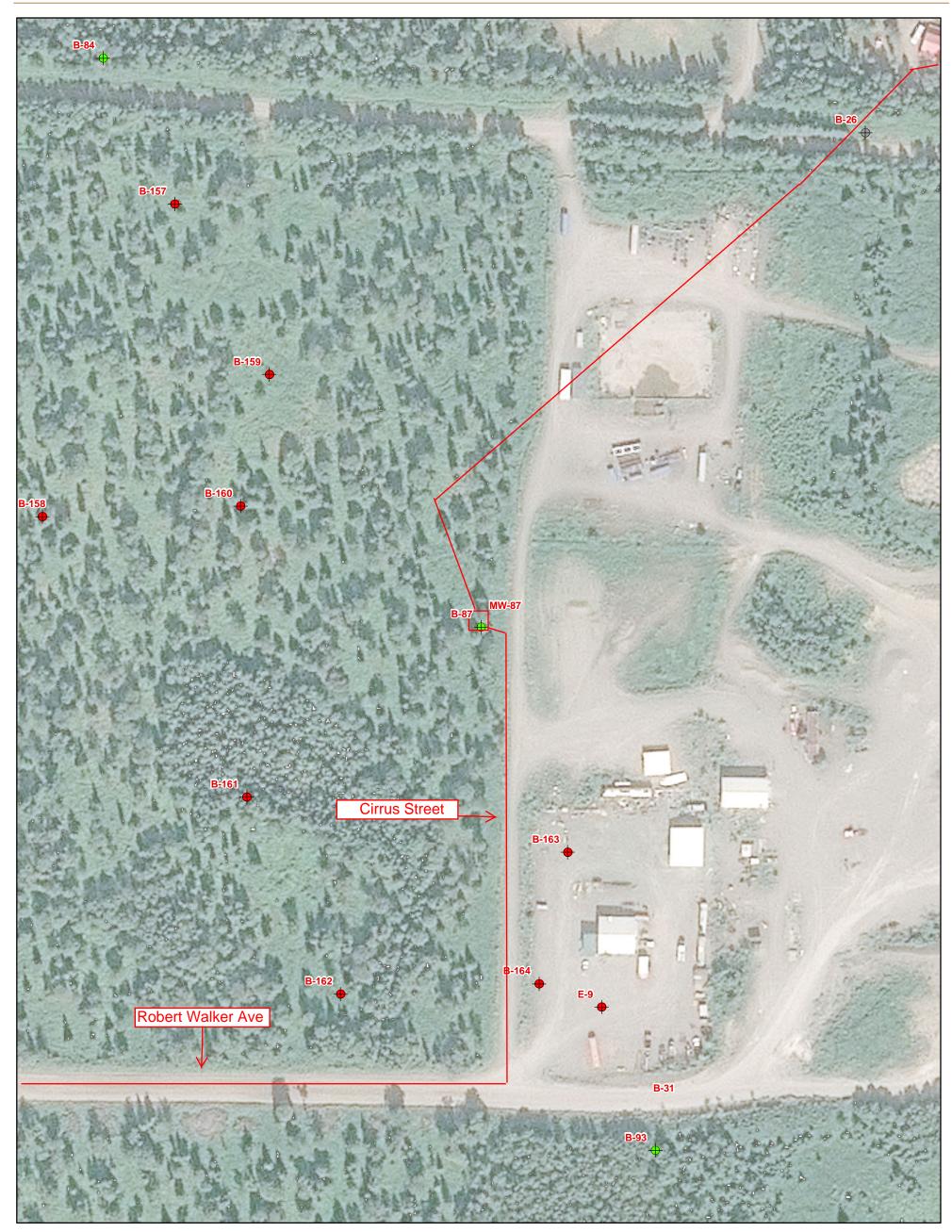


- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA

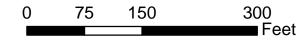


Legend


- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA

Project No. 04.10160001



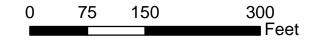
Legend

- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA

PLATE 1

Project No. 04.10160001



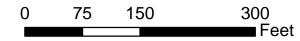
Legend

- + AKLNG2014, Completed
- + AKLNG2015, Completed
- AKLNG2016, Not Started

MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA

PLATE 1

Project No. 04.10160001



Legend


+ AKLNG2014, Completed

- + AKLNG2015, Completed
- AKLNG2016, Not Started

MONITORING WELL LOCATIONS ALASKA LNG PROJECT NIKISKI, ALASKA

PLATE 1

Groundwater Sampling Form

Site/Client Name:	Site/Client Name: Nikiski, AK Well ID:										
Project # : Water Q	uality Monito	ring (WQM),	AK LNG			Sample	e ID:				
Sampled By:						Sample	e Time:		Sampl	e Date:	
Weather Conditions	s:					Duplica	ate ID:				
Sampling Method:		v □ Other				MS/MS	SD 🗌 Yes [No	Trip Blank	Required:	Yes 🗌 No
					Well Info						
Well Type: Derm	nanent 🗌 T	emporary	V	Vell Di	ameter	in.	Screen Inte	erval:	ft B	GS to	ft BGS
Well Condition:	Good 🗌 Fa	ir 🗌 Poor (if	fair or poor e	explain	in Notes)		Stickup	Yes 🗌 N	lo; If yes,	ft above	e ground
				Ga	uging/Purgir						
Depth to Water (ft E						-	Pump Depth		:):		
Total Depth (ft BTC Depth to Product (f	,						Start Time (24 End Time (24				
Product Thickness						-	urge Time (m	-			
	ix Draw Down reen, then use			Screen	Depth)	X 0.25 =	=(ft); if	screen inte	erval is not kno	own or water table	e is below top of
Min. purge volume if				water/f	t(gal/ft)	X Water co					_=gal
Well Diameter -	· gal/ft	1" – 0.0	41 gal/ft		2" – 0.16			4' – 0.653	gal/ft	6' – 1.4	69 gal/ft
(Achieve stabl	le parameters i	for 3 consecuti	ve reading, 4		Vater Quality ters if practical			pumping a	minimum of 1	flow through cell	volume])
Time	Flow	Purge	Temp	S	pecific	DO	ORP	pH	Turbidity	DTW	Drawdown
(24-hr)	Rate (gal/	Volume (gal)	(°C)		ductance ^I S/cm ^c)	(mg/L)	(mV)	-	(NTU)	(ft BTOC)	(ft)
	minute)	(gui)	(± 3 %)		,			(± 0.1)	(± 10%,		
				((± 3%)	(± 10%)	(± 10mV)		or <5 NTU)		(Maxft)
Doromotor Stoble (Chaok applia	abla)									
Parameter Stable (спеск арріс	able)		1							
Sample Color:				Sam	ple Odor:			Shee	en:		
	A I.				Analytical				0		
WQM Method Statem	Analy			2	Check A	орпсаріе			Comm	ients	
WQM Method Statem			,	Suite							
		alei Suppiy G	uality Suite								
Notes:											
Equipment: Pump											
	Water Level Meter Multi-Parameter Meter (Make/SN#)										
Turbidity Meter (Make/SN#) Filter Lot #											
Purge Water Handling: Discharged to surface Containerized Treated (how?)											

Water Parameter Meter Calibration Log

Date:		_	Time:	(Calibration By:			
Meter Mar	nufacturer and	Identification #:						
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00							± 0.10
pН	4.00							± 0.10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413							± 10%
ORP (mV)	240							
DO*								± 2%
*			event, fill in box with pendent on pressure			oration Table		
	ufacturer and	_ Identification #:	Time:		Calibration By:			
				1			Deeding	Calibration
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Acceptance Criteria
	7.00							± 0.10
pН	4.00							± 0.10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413							± 10%
ORP (mV)	240							
DO*								± 2%
*	If parameter not in Note that the True	ncluded in sampling e Value for DO is de	event, fill in box with pendent on pressure	NA (not applicab and altitude; refe	le) rence the DO Cali	oration Table		
Date: Meter Mar	nufacturer and	_ Identification #:	Time:	(Calibration By:			
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00							± 0.10
pН	4.00							± 0.10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413							± 10%
ORP (mV)	240							
DO*								± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Turbidimeter Calibration Log

Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
		Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes
				no

Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
		Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes
				no

Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
		Bump check result or post calibration reading:	 Bump check result or post- calibration reading: 	yes
				no

Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
		Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes
				no

Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
Bump Check or Calibration Notes:		Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes
				no

Calibration Date	Calibration Time	Calibration By			
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable	
		NTU	NTU	Range?	
Bump Check 🗌 or Calibration 🗌 Notes	Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes		
				no	

Note: A bump check can verify the instrument is in proper calibration if the instrument reads an accurate value for a calibration solution (without performing a full calibration). In the event a bump check does not indicate the instrument is properly calibrated, a calibration will be performed, per manufacturer instructions.

APPENDIX B TABLE B-1, SUMMARY OF ANALYTICAL RESULTS AND ANALYTICAL LABORATORY REPORTS, AQUIFER PUMP TEST WELL DEVELOPMENT WATER

Report No. 04.10160001-4

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Report USAL-FG-GRZZZ-00-002016-002 Rev. 0 2-Dec-16 Table B-1 Summary of Analytical Results - APT Well Development Water for Waste Disposal Characterization Alaska LNG. 2016 Nikiski, AK

			_			Sample Ide	entification	1		
		Compound Permit AKG003000 Table 6 ² in milligrams		AP	'T-1	AP	APT-2		APT-3	
Method	in milligrams			Well Development Water (Lab ID APT-1-DEV-TK-0916)		Well Development Water (Lab ID APT-2-DEV-TK-0916)		Well Development Wate (Lab ID APT-3-DEV-TK-09		
	per Liter (mg/L)		Water Quality Standards for	09/12/2016 17:30		09/19/2016 16:50		09/06/2016 14:00		
		Effluent ²	Designated Uses ³	Conc. ¹	Flag	Conc. ¹	Flag	Conc. ¹	Flaç	
	Arsenic	0.01	0.01	0.027	=	0.0369	=	0.0775	=	
	Barium		2	0.0277	=	0.0917	=	0.361	=	
	Cadmium Chromium	0.005	0.01	[0.001] 0.00165	ND J	[0.001] 0.0208	ND =	[0.005] 0.101	ND =	
SW6020A Metals	Lead	0.05	0.0081	0.000796	J	0.00412	=	0.0237	=	
	Mercury	0.002	0.00005	[0.0001]	ND	0.000197	J	[0.0005]	ND	
	Selenium	0.01	0.005	[0.01]	ND	[0.01]	ND	[0.05]	ND	
	Silver		0.0019	[0.001]	ND	[0.001]	ND	[0.005]	ND	
SM21 4500-H B	pH	6.5 - 8.5	6.0 - 8.5	8.3 [0.00025]	= ND	8.3 [0.00025]	= ND	8.8 [0.00025]	= ND	
	1,1,1,2-Tetrachloroethane		0.2	[0.00025]	ND	[0.00025]	ND	[0.00025]	ND	
	1,1,2,2-Tetrachloroethane		0.0043	[0.00025]	ND	[0.00025]	ND	[0.00025]	ND	
	1,1,2-Trichloroethane		0.005	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,1-Dichloroethane		7.3	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,1-Dichloroethene 1,1-Dichloropropene		0.007	[0.0005]	ND ND	[0.0005]	ND ND	[0.0005]	ND ND	
	1,2,3-Trichlorobenzene			[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,2,3-Trichloropropane		0.00012	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,2,4-Trichlorobenzene		0.07	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,2,4-Trimethylbenzene		1.8	[0.0005]	ND	[0.0005]	ND	0.0023	=	
	1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane		0.0002	[0.005]	ND ND	[0.005]	ND ND	[0.005]	ND ND	
	1,2-Dichlorobenzene		0.6	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,2-Dichloroethane		0.005	[0.00025]	ND	[0.00025]	ND	[0.00025]	ND	
	1,2-Dichloropropane		0.005	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	1,3,5-Trimethylbenzene		1.8	[0.0005]	ND	[0.0005]	ND	0.00067	J	
	1,3-Dichlorobenzene 1,3-Dichloropropane		0.4	[0.0005]	ND ND	[0.0005]	ND ND	[0.0005]	ND ND	
	1,4-Dichlorobenzene		0.075	[0.00025]	ND	[0.0005]	ND	[0.0005]	ND	
	2,2-Dichloropropane			[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	2-Butanone		22	[0.005]	ND	[0.005]	ND	[0.005]	ND	
	2-Chlorotoluene			[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	2-Hexanone 4-Chlorotoluene			[0.005]	ND ND	[0.005]	ND ND	[0.005]	ND ND	
	4-Isopropyltoluene			[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	4-Methyl-2-pentanone		2.9	[0.005]	ND	[0.005]	ND	[0.005]	ND	
	Benzene		0.005	[0.0002]	ND	[0.0002]	ND	[0.0002]	ND	
	Bromobenzene			[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Bromochloromethane Bromodichloromethane		0.014	[0.0005]	ND ND	[0.0005]	ND ND	[0.0005] [0.00025]	ND ND	
	Bromoform		0.08	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Bromomethane		0.048	[0.005]	ND	[0.005]	ND	[0.005]	ND	
SW8260B VOC	Carbon disulfide		3.7	[0.005]	ND	[0.005]	ND	[0.005]	ND	
	Carbon tetrachloride		0.005	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Chlorobenzene Chloroethane		0.1 0.29	[0.00025]	ND ND	[0.00025]	ND ND	[0.00025]	ND ND	
	Chloroform		0.08	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Chloromethane		0.066	[0.0005]	ND	0.00031	J	[0.0005]	ND	
	cis-1,2-Dichloroethene		0.07	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	cis-1,3-Dichloropropene Dibromochloromethane		0.0085	[0.00025]	ND ND	[0.00025]	ND ND	[0.00025]	ND	
	Dibromochloromethane Dibromomethane		0.01	[0.00025]	ND ND	[0.00025]	ND ND	[0.00025]	ND ND	
	Dichlorodifluoromethane		7.3	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Ethylbenzene		0.7	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Freon-113			[0.005]	ND	[0.005]	ND	[0.005]	ND	
	Hexachlorobutadiene		0.0073	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Isopropylbenzene Methylene Chloride		3.7 0.005	[0.0005] [0.0025]	ND ND	[0.0005]	ND ND	[0.0005] [0.0025]	ND ND	
	Methyl tert-butyl ether		0.47	[0.005]	ND	[0.0023]	ND	[0.005]	ND	
	Naphthalene		0.73	[0.005]	ND	[0.005]	ND	[0.005]	ND	
	n-Butylbenzene		0.37	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	N-Propylbenzene		0.37	[0.0005]	ND	[0.0005]	ND	0.0004	J ND	
	o-Xylene P & M -Xylene		10	[0.0005] [0.001]	ND ND	[0.0005]	ND ND	[0.0005] [0.001]	ND ND	
	sec-Butylbenzene		0.37	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Styrene		0.1	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	t-Butylbenzene		0.37	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Tetrachloroethene		0.005	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
	Toluene		1	0.00225	=	0.00088	J	0.00324	=	
	trans-1,2-Dichloroethene trans-1,3-Dichloropropene		0.1	[0.0005]	ND ND	[0.0005]	ND ND	[0.0005]	ND ND	
	Trichloroethene		0.005	0.00158	=	[0.0005]	ND	0.00262	=	
	Trichlorofluoromethane		11	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	
				10.0051	NID	10 0051	ND	10 0051	ND	
	Vinyl acetate Vinyl chloride		0.002	[0.005]	ND ND	[0.005]	ND ND	[0.005]	ND ND	

Notes

1 - For detected results, the sample result is listed in this column. For results of non-detect, the LOD is listed in [] in this column.

2 - This screening level corresponds to ADEC Alaska General Permit for Hydrostatic and Aquifer Pump Testing, Permit No. AKG003000 Table 6: Effluent Limits and Monitoring equirements for Aquifer Pump Testing Discharges to Waters of the U.S. http://dec.alaska.gov/water/wnpspc/stormwater/docs/AKG003000_Hydrostatic_GP_Permit.pdf

3 - This screening level corresponds to the most conservative values within ADEC Water Quality Standards 18 AAC 70. Amended 2/19/2016. https://dec.alaska.gov/commish/regulations/pdfs/18%20AAC%2070.pdf

-- Not applicable or screening critieria does not exist for this compound

Detected concentrations shown in Bold

Data Flags

=	Analyte detected at concentration listed in column to the left.
J	Result is considered an estimated value because the level is below the laboratory LOQ, but above the DL.
ND	Non-detect, LOD is in brackets [] in the concentration column.

Abbreviations

DL	Detection Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
VOCs	Volatile Organic Compounds

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell St Suite 200 Anchorage, AK 99503 (907)222-1112

Report Number: **1165401**

Client Project: 105.00148.16001 Kenai Wells

Dear Jason Gray,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc	SGS North America Inc. Environmental Services – Alaska Division Project Manager	Justin Nelson 2016.09.18 13:39:03 -08'00'
Justin Nelson Project Manager Justin.Nelson@sas.com	Date	

Print Date: 09/18/2016 1:12:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1165401 Project Name/Site: 105.00148.16001 Kenai Wells Project Contact: Jason Gray

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/18/2016 1:12:50PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	include a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 09/18/2016 1:12:52PM

Note:

Sample Summary									
<u>Client Sample ID</u> APT-1-DEV-TK-0916	<u>Lab Sample ID</u> 1165401001	<u>Collected</u> 09/12/2016	<u>Received</u> 09/13/2016	<u>Matrix</u> Water (Surface, Eff., Ground)					
TB-5-0916	1165401002	09/12/2016	09/13/2016	Water (Surface, Eff., Ground)					
<u>Method</u>	Method Des	scription							
SW6020A	Metals by IC								
SM21 4500-H B	pH Analysis	;							
SW8260B	Volatile Org	anic Compounds	(W) FULL						

Print Date: 09/18/2016 1:12:53PM

Client Sample ID: APT-1-DEV-TK-0916				
Lab Sample ID: 1165401001	Parameter	Result	<u>Units</u>	
Metals by ICP/MS	Arsenic	27.0	ug/L	
	Barium	27.7	ug/L	
	Chromium	1.65J	ug/L	
	Lead	0.796J	ug/L	
Volatile GC/MS	Toluene	2.25	ug/L	
	Trichloroethene	1.58	ug/L	
Waters Department	рН	8.30	pH units	
Client Sample ID: TB-5-0916				
Lab Sample ID: 1165401002	Parameter	Result	Units	
Volatile GC/MS	Styrene	0.320J	ug/L	

Print Date: 09/18/2016 1:12:55PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of APT-1-DEV-TK-0916

Client Sample ID: **APT-1-DEV-TK-0916** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165401001 Lab Project ID: 1165401 Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	27.0	5.00	1.50	ug/L	5		09/17/16 13:29
Barium	27.7	3.00	0.940	ug/L	5		09/17/16 13:29
Cadmium	1.00 U	2.00	0.620	ug/L	5		09/17/16 13:29
Chromium	1.65 J	4.00	1.30	ug/L	5		09/17/16 13:29
Lead	0.796 J	1.00	0.310	ug/L	5		09/17/16 13:29
Mercury	0.100 U	0.200	0.0620	ug/L	5		09/17/16 13:29
Selenium	10.0 U	20.0	6.20	ug/L	5		09/17/16 13:29
Silver	1.00 U	2.00	0.620	ug/L	5		09/17/16 13:29

Batch Information

Analytical Batch: MMS9536 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/17/16 13:29 Container ID: 1165401001-E Prep Batch: MXX30185 Prep Method: SW3010A Prep Date/Time: 09/14/16 09:05 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 09/18/2016 1:12:56PM

J flagging is activated

Results of APT-1-DEV-TK-0916

Client Sample ID: **APT-1-DEV-TK-0916** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165401001 Lab Project ID: 1165401 Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/13/16 23:34
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/13/16 23:34
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/13/16 23:34
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/13/16 23:34
Benzene	0.200 U	0.400	0.120	ug/L	1		09/13/16 23:34
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
Bromomethane	5.00 U	10.0	3.10	ug/L	1		09/13/16 23:34
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/13/16 23:34
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/13/16 23:34
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 23:34

Print Date: 09/18/2016 1:12:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of APT-1-DEV-TK-0916

Client Sample ID: **APT-1-DEV-TK-0916** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165401001 Lab Project ID: 1165401 Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1	09/13/16 23:34
Chloromethane	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	09/13/16 23:34
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	09/13/16 23:34
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/13/16 23:34
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	09/13/16 23:34
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/13/16 23:34
Naphthalene	5.00 U	10.0	3.10	ug/L	1	09/13/16 23:34
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	09/13/16 23:34
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Styrene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Toluene	2.25	1.00	0.310	ug/L	1	09/13/16 23:34
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Trichloroethene	1.58	1.00	0.310	ug/L	1	09/13/16 23:34
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	09/13/16 23:34
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1	09/13/16 23:34
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	09/13/16 23:34
Surrogates						
1,2-Dichloroethane-D4 (surr)	97.3	81-118		%	1	09/13/16 23:34
4-Bromofluorobenzene (surr)	98.5	85-114		%	1	09/13/16 23:34
Toluene-d8 (surr)	103	89-112		%	1	09/13/16 23:34

Print Date: 09/18/2016 1:12:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of APT-1-DEV-TK-0916

Client Sample ID: **APT-1-DEV-TK-0916** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165401001 Lab Project ID: 1165401 Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS16184 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 09/13/16 23:34 Container ID: 1165401001-A Prep Batch: VXX29565 Prep Method: SW5030B Prep Date/Time: 09/13/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/18/2016 1:12:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of APT-1-DEV-TK-0916							
Client Sample ID: APT-1-DEV-TK-0916 Client Project ID: 105.00148.16001 Kenai Wells Lab Sample ID: 1165401001 Lab Project ID: 1165401		R M Se	eceived Da	ate: 09/12/16 ate: 09/13/16 r (Surface, Ef	13:13	d)	
Results by Waters Department							
<u>Parameter</u> pH	<u>Result Qual</u> 8.30	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.100		<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 09/14/16 14:30
Batch Information Analytical Batch: WTI4510 Analytical Method: SM21 4500-H B Analyst: KBE Analytical Date/Time: 09/14/16 14:30 Container ID: 1165401001-D							

Print Date: 09/18/2016 1:12:56PM

J flagging is activated

Results of TB-5-0916

Client Sample ID: TB-5-0916
Client Project ID: 105.00148.16001 Kenai Wells
Lab Sample ID: 1165401002
Lab Project ID: 1165401

Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
Benzene	0.200 U	0.400	0.120	ug/L	1		09/13/16 20:37
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Bromomethane	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37

Print Date: 09/18/2016 1:12:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16

Results of TB-5-0916

Client Sample ID: TB-5-0916
Client Project ID: 105.00148.16001 Kenai Wells
Lab Sample ID: 1165401002
Lab Project ID: 1165401

Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

			DI		55	Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u> 1	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	-		09/13/16 20:37
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/13/16 20:37
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/13/16 20:37
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
Naphthalene	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/13/16 20:37
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Styrene	0.320 J	1.00	0.310	ug/L	1		09/13/16 20:37
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Toluene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/13/16 20:37
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		09/13/16 20:37
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/13/16 20:37
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.8	81-118		%	1		09/13/16 20:37
4-Bromofluorobenzene (surr)	98.6	85-114		%	1		09/13/16 20:37
Toluene-d8 (surr)	102	89-112		%	1		09/13/16 20:37

Print Date: 09/18/2016 1:12:56PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of TB-5-0916

Client Sample ID: **TB-5-0916** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165401002 Lab Project ID: 1165401

Collection Date: 09/12/16 17:30 Received Date: 09/13/16 13:13 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS16184 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 09/13/16 20:37 Container ID: 1165401002-A Prep Batch: VXX29565 Prep Method: SW5030B Prep Date/Time: 09/13/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/18/2016 1:12:56PM

J flagging is activated

Member of SGS Group

13 of 29

Method Blank

Blank ID: MB for HBN 1743088 [MXX/30185] Blank Lab ID: 1351846

QC for Samples: 1165401001

Results by SW6020A

Parameter	Results	LOQ/CL	DL
Arsenic	2.50U	5.00	1.50
Barium	1.50U	3.00	0.940
Cadmium	1.00U	2.00	0.620
Chromium	2.00U	4.00	1.30
Lead	0.500U	1.00	0.310
Mercury	0.100U	0.200	0.0620
Selenium	10.0U	20.0	6.20
Silver	1.00U	2.00	0.620

Batch Information

Analytical Batch: MMS9536 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 9/17/2016 1:21:02PM Prep Batch: MXX30185 Prep Method: SW3010A Prep Date/Time: 9/14/2016 9:05:06AM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 09/18/2016 1:13:04PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165401 [MXX30185] Blank Spike Lab ID: 1351847 Date Analyzed: 09/17/2016 13:25

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165401001

Results by SW6020A

		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Arsenic	1000	979	98	(84-116)
Barium	1000	1040	104	(86-114)
Cadmium	100	107	107	(87-115)
Chromium	400	397	99	(85-116)
Lead	1000	1030	103	(88-115)
Mercury	10	10.3	103	(70-124)
Selenium	1000	955	96	(80-120)
Silver	100	102	102	(85-116)

Analytical Batch: MMS9536 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Prep Batch: MXX30185 Prep Method: SW3010A Prep Date/Time: 09/14/2016 09:05 Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/18/2016 1:13:07PM

Matrix Spike Summary

Original Sample ID: 1351848 MS Sample ID: 1351849 MS MSD Sample ID: 1351850 MSD Analysis Date: 09/17/2016 13:38 Analysis Date: 09/17/2016 13:43 Analysis Date: 09/17/2016 13:47 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165401001

Results by SW6020A

		Mat	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Arsenic	2.50U	1000	998	100	1000	970	97	84-116	2.82	(< 20)
Barium	2.24J	1000	1050	105	1000	1050	105	86-114	0.09	(< 20)
Cadmium	1.00U	100	105	105	100	105	105	87-115	0.26	(< 20)
Chromium	2.00U	400	390	98	400	389	97	85-116	0.20	(< 20)
Lead	0.500U	1000	1000	100	1000	1010	101	88-115	0.32	(< 20)
Mercury	0.100U	10.0	10.2	102	10.0	10.1	101	70-124	0.57	(< 20)
Selenium	10.0U	1000	992	99	1000	973	97	80-120	1.93	(< 20)
Silver	1.00U	100	103	103	100	102	102	85-116	1.24	(< 20)

Batch Information

Analytical Batch: MMS9536 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 9/17/2016 1:43:25PM Prep Batch: MXX30185 Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 9/14/2016 9:05:06AM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 09/18/2016 1:13:08PM

Method Blank

Blank ID: MB for HBN 1743178 [VXX/29565] Blank Lab ID: 1352185 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165401001, 1165401002

Results by SW8260B

Parameter		<u>Results</u>	LOQ/CL	DL	Units
1,1,1,2-Tetrachle	oroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroet	hane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachle	oroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroet	hane	0.500U	1.00	0.310	ug/L
1,1-Dichloroetha	ine	0.500U	1.00	0.310	ug/L
1,1-Dichloroethe	ene	0.500U	1.00	0.310	ug/L
1,1-Dichloroprop	ene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobe	enzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorop	ropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobe	enzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylb	enzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-c	hloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoetha	ane	0.500U	1.00	0.310	ug/L
1,2-Dichloroben	zene	0.500U	1.00	0.310	ug/L
1,2-Dichloroetha	ine	0.250U	0.500	0.150	ug/L
1,2-Dichloroprop	ane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylb	enzene	0.500U	1.00	0.310	ug/L
1,3-Dichloroben	zene	0.500U	1.00	0.310	ug/L
1,3-Dichloroprop	ane	0.250U	0.500	0.150	ug/L
1,4-Dichloroben	zene	0.250U	0.500	0.150	ug/L
2,2-Dichloroprop	ane	0.500U	1.00	0.310	ug/L
2-Butanone (ME	K)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene		0.500U	1.00	0.310	ug/L
2-Hexanone		5.00U	10.0	3.10	ug/L
4-Chlorotoluene		0.500U	1.00	0.310	ug/L
4-Isopropyltolue	ne	0.500U	1.00	0.310	ug/L
4-Methyl-2-penta	anone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene		0.200U	0.400	0.120	ug/L
Bromobenzene		0.500U	1.00	0.310	ug/L
Bromochloromet	thane	0.500U	1.00	0.310	ug/L
Bromodichlorom	ethane	0.250U	0.500	0.150	ug/L
Bromoform		0.500U	1.00	0.310	ug/L
Bromomethane		5.00U	10.0	3.10	ug/L
Carbon disulfide		5.00U	10.0	3.10	ug/L
Carbon tetrachlo	oride	0.500U	1.00	0.310	ug/L
Chlorobenzene		0.250U	0.500	0.150	ug/L
Chloroethane		0.500U	1.00	0.310	ug/L
Chloroform		0.500U	1.00	0.300	ug/L

Print Date: 09/18/2016 1:13:09PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1743178 [VXX/29565] Blank Lab ID: 1352185 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165401001, 1165401002

Results by SW8260B

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	5.00U	10.0	3.10	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	97.5	81-118		%
4-Bromofluorobenzene (surr)	100	85-114		%
Toluene-d8 (surr)	101	89-112		%

Print Date: 09/18/2016 1:13:09PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS		oservation Well Installa Z-00-002016-002 Rev.					
Method Blank							
Blank ID: MB for HBN 1743178 [VXX/29565] Blank Lab ID: 1352185		Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1165401001, 1165401	002						
Results by SW8260	В						
Results by SW8260	B <u>Results</u>	LOQ/CL	DL	Units			
		LOQ/CL	<u>DL</u>	Units			

Print Date: 09/18/2016 1:13:09PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165401 [VXX29565] Blank Spike Lab ID: 1352186 Date Analyzed: 09/13/2016 16:51 Spike Duplicate ID: LCSD for HBN 1165401 [VXX29565] Spike Duplicate Lab ID: 1352187 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165401001, 1165401002

Results by SW8260B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.5	98	30	29.8	99	(78-124)	1.20	(< 20)
1,1,1-Trichloroethane	30	31.0	103	30	31.9	106	(74-131)	2.90	(< 20)
1,1,2,2-Tetrachloroethane	30	30.6	102	30	31.8	106	(71-121)	3.70	(< 20)
1,1,2-Trichloroethane	30	31.1	104	30	31.8	106	(80-119)	2.40	(< 20)
1,1-Dichloroethane	30	30.6	102	30	31.4	105	(77-125)	2.60	(< 20)
1,1-Dichloroethene	30	31.4	105	30	32.3	108	(71-131)	2.80	(< 20)
1,1-Dichloropropene	30	31.1	104	30	32.3	108	(79-125)	3.60	(< 20)
1,2,3-Trichlorobenzene	30	32.5	108	30	34.0	113	(69-129)	4.50	(< 20)
1,2,3-Trichloropropane	30	29.8	99	30	30.5	102	(73-122)	2.50	(< 20)
1,2,4-Trichlorobenzene	30	32.5	108	30	33.5	112	(69-130)	3.10	(< 20)
1,2,4-Trimethylbenzene	30	29.3	98	30	30.4	101	(79-124)	3.60	(< 20)
1,2-Dibromo-3-chloropropane	30	31.3	104	30	33.4	111	(62-128)	6.50	(< 20)
1,2-Dibromoethane	30	31.5	105	30	32.5	108	(77-121)	3.00	(< 20)
1,2-Dichlorobenzene	30	30.0	100	30	30.8	103	(80-119)	2.70	(< 20)
1,2-Dichloroethane	30	27.3	91	30	27.8	93	(73-128)	1.90	(< 20)
1,2-Dichloropropane	30	31.3	104	30	32.0	107	(78-122)	2.10	(< 20)
1,3,5-Trimethylbenzene	30	29.0	97	30	29.4	98	(75-124)	1.40	(< 20)
1,3-Dichlorobenzene	30	30.2	101	30	30.9	103	(80-119)	2.30	(< 20)
1,3-Dichloropropane	30	30.8	103	30	31.8	106	(80-119)	3.20	(< 20)
1,4-Dichlorobenzene	30	30.9	103	30	31.9	106	(79-118)	3.20	(< 20)
2,2-Dichloropropane	30	32.5	108	30	33.4	111	(60-139)	2.70	(< 20)
2-Butanone (MEK)	90	84.9	94	90	91.3	101	(56-143)	7.20	(< 20)
2-Chlorotoluene	30	30.4	101	30	31.3	104	(79-122)	3.00	(< 20)
2-Hexanone	90	84.9	94	90	90.5	101	(57-139)	6.30	(< 20)
4-Chlorotoluene	30	30.7	102	30	31.6	105	(78-122)	2.70	(< 20)
4-Isopropyltoluene	30	29.8	99	30	31.1	104	(77-127)	4.10	(< 20)
4-Methyl-2-pentanone (MIBK)	90	88.1	98	90	93.8	104	(67-130)	6.30	(< 20)
Benzene	30	30.7	102	30	31.8	106	(79-120)	3.60	(< 20)
Bromobenzene	30	30.2	101	30	30.9	103	(80-120)	2.30	(< 20)
Bromochloromethane	30	30.4	101	30	30.9	103	(78-123)	1.50	(< 20)
Bromodichloromethane	30	30.8	103	30	31.5	105	(79-125)	2.30	(< 20)
Bromoform	30	31.1	104	30	31.5	105	(66-130)	1.40	(< 20)
Bromomethane	30	27.1	90	30	27.8	93	(53-141)	2.50	(< 20)
Carbon disulfide	45	50.7	113	45	52.2	116	(64-133)	2.90	(< 20)

Print Date: 09/18/2016 1:13:10PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165401 [VXX29565] Blank Spike Lab ID: 1352186 Date Analyzed: 09/13/2016 16:51 Spike Duplicate ID: LCSD for HBN 1165401 [VXX29565] Spike Duplicate Lab ID: 1352187 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165401001, 1165401002

Results by SW8260B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter_	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	31.1	104	30	32.1	107	(72-136)	3.10	(< 20)
Chlorobenzene	30	31.1	104	30	32.0	107	(82-118)	2.90	(< 20)
Chloroethane	30	24.9	83	30	23.4	78	(60-138)	6.30	(< 20)
Chloroform	30	28.2	94	30	28.8	96	(79-124)	2.00	(< 20)
Chloromethane	30	28.7	96	30	28.8	96	(50-139)	0.56	(< 20)
cis-1,2-Dichloroethene	30	30.7	102	30	31.7	106	(78-123)	3.10	(< 20)
cis-1,3-Dichloropropene	30	32.1	107	30	33.1	110	(75-124)	3.00	(< 20)
Dibromochloromethane	30	29.4	98	30	30.0	100	(74-126)	2.00	(< 20)
Dibromomethane	30	29.8	99	30	30.2	101	(79-123)	1.60	(< 20)
Dichlorodifluoromethane	30	25.3	84	30	26.0	87	(32-152)	2.80	(< 20)
Ethylbenzene	30	32.2	107	30	33.0	110	(79-121)	2.40	(< 20)
Freon-113	45	52.9	118	45	54.2	120	(70-136)	2.40	(< 20)
Hexachlorobutadiene	30	31.9	106	30	33.4	111	(66-134)	4.80	(< 20)
lsopropylbenzene (Cumene)	30	29.5	98	30	30.4	101	(72-131)	3.00	(< 20)
Methylene chloride	30	29.4	98	30	29.7	99	(74-124)	1.10	(< 20)
Methyl-t-butyl ether	45	49.4	110	45	50.2	111	(71-124)	1.50	(< 20)
Naphthalene	30	30.6	102	30	34.0	113	(61-128)	10.80	(< 20)
n-Butylbenzene	30	31.8	106	30	33.3	111	(75-128)	4.50	(< 20)
n-Propylbenzene	30	29.5	98	30	30.4	101	(76-126)	3.20	(< 20)
o-Xylene	30	32.5	108	30	33.5	112	(78-122)	3.00	(< 20)
P & M -Xylene	60	64.5	107	60	65.8	110	(80-121)	2.10	(< 20)
sec-Butylbenzene	30	29.9	100	30	30.7	102	(77-126)	2.70	(< 20)
Styrene	30	29.3	98	30	30.2	101	(78-123)	3.10	(< 20)
tert-Butylbenzene	30	30.1	100	30	31.1	104	(78-124)	3.20	(< 20)
Tetrachloroethene	30	32.2	107	30	32.5	108	(74-129)	1.20	(< 20)
Toluene	30	30.7	102	30	32.0	107	(80-121)	4.00	(< 20)
trans-1,2-Dichloroethene	30	30.0	100	30	32.2	107	(75-124)	7.30	(< 20)
trans-1,3-Dichloropropene	30	32.5	108	30	33.2	111	(73-127)	2.10	(< 20)
Trichloroethene	30	30.7	102	30	31.7	106	(79-123)	3.10	(< 20)
Trichlorofluoromethane	30	29.8	99	30	30.4	101	(65-141)	2.10	(< 20)
Vinyl acetate	30	33.0	110	30	33.9	113	(54-146)	2.60	(< 20)
Vinyl chloride	30	28.7	96	30	29.7	99	(58-137)	3.70	(< 20)
Xylenes (total)	90	97.0	108	90	99.4	110	(79-121)	2.40	(< 20)

Print Date: 09/18/2016 1:13:10PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165401 [VXX29565] Blank Spike Lab ID: 1352186 Date Analyzed: 09/13/2016 16:51 Spike Duplicate ID: LCSD for HBN 1165401 [VXX29565] Spike Duplicate Lab ID: 1352187 Matrix: Water (Surface, Eff., Ground)

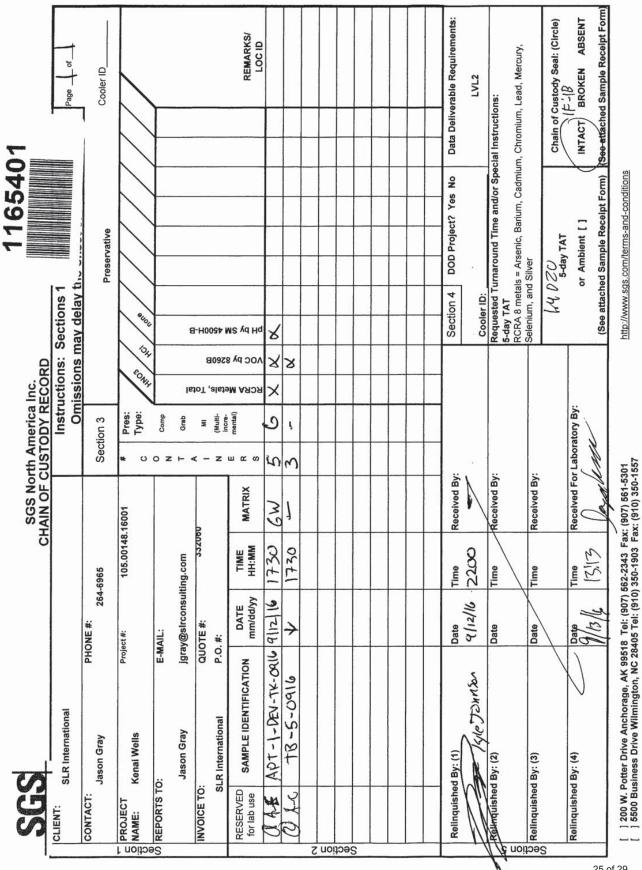
QC for Samples: 1165401001, 1165401002

Results by SW8260B Blank Spike (%) Spike Duplicate (%) Parameter <u>Spike</u> Rec (%) <u>Spike</u> Result Rec (%) CL <u>RPD (%)</u> RPD CL Result Surrogates 1,2-Dichloroethane-D4 (surr) 95.6 30 95 30 96 95 (81-118) 0.59 4-Bromofluorobenzene (surr) 30 96 96 30 96.3 96 (85-114) 0.24 Toluene-d8 (surr) 30 102 102 30 101 0.92 101 (89-112)

Batch Information

Analytical Batch: VMS16184 Analytical Method: SW8260B Instrument: VSA Agilent GC/MS 7890B/5977A Analyst: TJT Prep Batch: VXX29565 Prep Method: SW5030B Prep Date/Time: 09/13/2016 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/18/2016 1:13:10PM


Duplicate Sample Summ	nary							
Original Sample ID: 116 Duplicate Sample ID: 13			Analysis Date: 09/14/2016 13:12 Matrix: Drinking Water					
QC for Samples:								
1165401001								
Results by SM21 4500-H B								
NAME	NAME Original		Units	<u>RPD (%)</u>	RPD CL			
рН	7.40	7.40	pH units	0.00	(< 5)			
Batch Information								
Analytical Batch: WTI451 Analytical Method: SM21 Instrument: Titration Analyst: KBE	0 4500-Н В							

Print Date: 09/18/2016 1:13:13PM

SGS	Grour	NG Facilities Aquifendwater Observation	idential er Pump Test Well and on Well Installation Report 02016-002 Rev.0 2-Dec-16
Blank Spike Summary			
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1352148 Date Analyzed: 09/14/2016 QC for Samples: 11654010	48 6 10:32		Matrix: Water (Surface, Eff., Ground)
Results by SM21 4500-H B			
	Plank Sn	iko (pH upita)	
Daramator		ike (pH units)	
Parameter	Spike Res		
ЪН	7 7.03	100	(99-101)
Batch Information			
Analytical Batch: WTI4510 Analytical Method: SM21 4500 Instrument: Titration Analyst: KBE	-Н В		Prep Batch: Prep Method: Prep Date/Time: Spike Init Wt./Vol.: 7 pH units Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/18/2016 1:13:14PM

-

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

25 of 29

	AIRPOR	TURE ENA		16 07:51	095166	808	7137471	Frgt
			SS & PHONE	SH	IPPER'S ACCOUNT NUMBE	R NOT AIR WAYBILL (AIR CONSIGNMENT NO	Ravn	4700 Old International Airport Road Anchorage, Alaska 99502
	GNEE'S	NAME, ADDR	AK RESS & PHONE SON	CON	5208081220	It is agreed that the goods (except as noted) for carri THE COMPANIES TARIFI CONCERNING CARRIER	described herein are acce age SUBJECT TO THE CO F8. THE SHIPPER'S ATE	offed in apparent good order and condition NDITIONS OF CONTRACT AS LISTED IN NTION IS DRAWN TO THE NOTICE IY. Shipper may increase such limitation of aying a supplemental charge if required.
200 ANC	WES CHOR	T POTTE AGE			9075503205	Received in Good Condition Place TO EXPEDITE MOVEMENT, 5 RULE UNLESS SHIPPER GIVE ALSO NOTIFY NAME & AI	TO OTHER MOTROCTION HER	Date TO MOTOR OR OTHER CARRIER AS PER TARIFF EON
AGENT'S	IATA COD	ÞE		ACCOUNT NO.		ACCOUNTING INFORMAT		
AIRPORT	OF DEPA	RTURE		Declared Value	Insured Amount	- Card VI 0927 Exp		
		1	N	\$ 0.00	\$ 0.00	COMMENTS NOA MIKE LIGHT 1:00F	PM 9/13 TW	
No. Of Pieces Rcp	Gross Weight	kg Ib	Class Commodity Item No.	Chargeable Weight	Rate/Charge	Total	Nati	ure and Quantity of Goods
4 1	145 [PREPA \$53.		EIGHT CHARGE	COLLECT		\$53.65 CHARGES AND DESCRIPTION		165401
		VALU	JATION CHARGE		AMOUNT	DESCRIPTION		
	\$0.0 \$3.3 \$0.00	FEDE 5 TOTAL OTHER	RAL EXCISE TAX	NT	-		HAZM	
TION NUM HORAGE - K - (907) 6: ROW - (907) HEL - (907) 9 DHORSE - 1	\$0.0 <u>OTAL PRE</u> \$57.0 BERS (907) 243- 75-4572 7) 852-5300 543-3825	0 PAID 10 2761	FAIRBANKS - GALENA - (907 KOTZEBUE - (NOME - (907) ST. MARYS - ((907) 450-7250 0 656-1875 907) 442-3020 143-7595 907) 438-2247	unless a higher value f part of the consignmen by air according to app Air Transport Associati Paid By Shipper	or carriage is declared on the fa for carriage is declared on the fa it contains restricted articles, suc licable national governmental re on's Restricted Articles Regulation	ce hereof subject to an add h part is described by name	CONDITIONS AS LISTED IN THE mpanies tariffs and accepts such value tional charge and that insofar as any a and is in proper condition for carriage nal shipments, the current international
			16 at ANC-FRT1	- (907) 624-3595 10.14.14.2	Printed Name and Title			

Customer Copy

alo	16 Fugre	•
rom	565	
<u> </u>	Prepay D	Advance Charges
Collect 🗆	Account	
ob #	PO#	
	40	145
		Figl
	7137471	····
	44054	
<u>Electrone</u>	116540)1
*		
hipped Signatur	0	

27 of 29

e-SAMPLE RECEIPT FORM

	1165401							
Review Criteria	Y/N (yes	/no)	Exc	eptions No	ted below			
Were Custody Seals intact? Note # & location Y COC accompanied samples? Y			exemption permitted if sampler hand carries/delivers. 1-F, 1-B					
**exemption permitted if chilled & collected <8hrs ago or chiling not required (i.e.							_	
	Y	Cooler ID:		@	1.4 °C	Therm ID:	D20	
		Cooler ID:	-	@		Therm ID:	020	
Temperature blank compliant* (i.e., 0-6 °C a	after CF)?	Cooler ID:		@		Therm ID:		
- p		Cooler ID:		@		Therm ID:		
		Cooler ID:		@	°C	Therm ID:		
*If >6°C, were samples collected <8 hou	ırs ago?	1						
If <0°C, were sample containers	ice free?	1						
If samples received <u>without</u> a temperature blank, the "cooler temperat be documented in lieu of the temperature blank & " COOLER TEMP " wi noted to the right. In cases where neither a temp blank nor cooler tem obtained, note "ambient" or "chilled".	ll be							
Note: Identify containers received at non-compliant temperature . Us FS-0029 if more space is needed.	e form							
Were samples received within h	old time?	Note: Refer	to form F-083 "Sam	ple Guide" for	hold times.			
Do samples match COC** (i.e.,sample IDs,dates/times co	ollected)? Y]						
**Note: If times differ <1hr, record details & login	per COC.	<u> </u>						
Were analyses requested unam	biguous? Y	<u> </u>						
			***Exemption p	n permitted for metals (e.g,200.8/6020A).				
Were proper containers (type/mass/volume/preservative*	**)used? Y							
IF APPLICABLE		[
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples? Y							
Were all VOA vials free of headspace (i.e., bubbles	≤ 6mm)? Y							
Were all soil VOAs field extracted with Me	OH+BFB?]						
Note to Client: Any "no" answer above indicates	s non-complian	ce with standa	ard procedures and	may impact d	ata quality.			
Addit	ional notes	(if applicab	le):					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	Preservative	<u>Container</u> Condition
1165401001-A	HCL to $pH < 2$	ОК			
1165401001-B	HCL to pH < 2	OK			
1165401001-C	HCL to pH < 2	ОК			
1165401001-D	No Preservative Required	OK			
1165401001-E	HNO3 to $pH < 2$	OK			
1165401002-A	HCL to pH < 2	OK			
1165401002-В	HCL to pH < 2	OK			
1165401002-C	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell St Suite 200 Anchorage, AK 99503 (907)222-1112

Report Number: 1165575

Client Project: 105.00148.16001 Kenai Wells

Dear Jason Gray,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Print Date: 09/27/2016 3:21:50PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1165575 Project Name/Site: 105.00148.16001 Kenai Wells Project Contact: Jason Gray

Refer to sample receipt form for information on sample condition.

LCS for HBN 1743673 [VXX/29611 (1353868) LCS

8260B - LCS recovery for several analytes does not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

LCSD for HBN 1743673 [VXX/2961 (1353869) LCSD

8260B - LCSD recovery for several analytes does not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

1165467004(1352351MS) (1352352) MS

6020A - Metals MS recoveries for silver (35.7%) and mercury (34%) do not meet QC criteria. The post digestion spike was successful.

1165467004(1352351MSD) (1352353) MSD

6020A - Metals MSD recoveries for silver (37.6%) and mercury (37.7%) do not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/27/2016 3:21:50PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
M	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 09/27/2016 3:21:52PM

Note:

Sample Summary										
Client Sample ID	Lab Sample ID	Collected	Received	Matrix						
APT2-DEV-TK	1165575001	09/19/2016	09/20/2016	Water (Surface, Eff., Ground						
Method	Method Des	cription								
SW6020A	Metals by IC									
SM21 4500-H B	pH Analysis									
SW8260B	Volatile Org	anic Compounds	(W) FULL							

Print Date: 09/27/2016 3:21:53PM

	Detectable Results Summa	ıry	
Client Sample ID: APT2-DEV-TK			
Lab Sample ID: 1165575001	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	36.9	ug/L
-	Barium	91.7	ug/L
	Chromium	20.8	ug/L
	Lead	4.12	ug/L
	Mercury	0.197J	ug/L
Volatile GC/MS	Chloromethane	0.310J	ug/L
	Toluene	0.880J	ug/L
Waters Department	рН	8.30	pH units

Print Date: 09/27/2016 3:21:54PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of APT2-DEV-TK

Client Sample ID: APT2-DEV-TK
Client Project ID: 105.00148.16001 Kenai Wells
Lab Sample ID: 1165575001
Lab Project ID: 1165575

Collection Date: 09/19/16 16:50 Received Date: 09/20/16 11:23 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	36.9	5.00	1.50	ug/L	5		09/26/16 10:41
Barium	91.7	3.00	0.940	ug/L	5		09/26/16 10:41
Cadmium	1.00 U	2.00	0.620	ug/L	5		09/26/16 10:41
Chromium	20.8	4.00	1.30	ug/L	5		09/26/16 10:41
Lead	4.12	1.00	0.310	ug/L	5		09/26/16 10:41
Mercury	0.197 J	0.200	0.0620	ug/L	5		09/26/16 10:41
Selenium	10.0 U	20.0	6.20	ug/L	5		09/26/16 10:41
Silver	1.00 U	2.00	0.620	ug/L	5		09/26/16 10:41

Batch Information

Analytical Batch: MMS9548 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/26/16 10:41 Container ID: 1165575001-A Prep Batch: MXX30196 Prep Method: SW3010A Prep Date/Time: 09/23/16 13:36 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 09/27/2016 3:21:55PM

J flagging is activated

SGS

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16

Results of APT2-DEV-TK

Client Sample ID: **APT2-DEV-TK** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165575001 Lab Project ID: 1165575 Collection Date: 09/19/16 16:50 Received Date: 09/20/16 11:23 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
Benzene	0.200 U	0.400	0.120	ug/L	1		09/20/16 23:27
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Bromomethane	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27

Print Date: 09/27/2016 3:21:55PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16

Results of APT2-DEV-TK

Client Sample ID: **APT2-DEV-TK** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165575001 Lab Project ID: 1165575 Collection Date: 09/19/16 16:50 Received Date: 09/20/16 11:23 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

			D		55	Allowable	
<u>Parameter</u> Chloroform	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.300	<u>Units</u>	<u>DF</u> 1		Date Analyzed
				ug/L	-		09/20/16 23:27
Chloromethane	0.310 J	1.00	0.310	ug/L	1		09/20/16 23:27
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/20/16 23:27
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/20/16 23:27
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
Naphthalene	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/20/16 23:27
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Styrene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Toluene	0.880 J	1.00	0.310	ug/L	1		09/20/16 23:27
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/20/16 23:27
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		09/20/16 23:27
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/20/16 23:27
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		09/20/16 23:27
4-Bromofluorobenzene (surr)	98.9	85-114		%	1		09/20/16 23:27
Toluene-d8 (surr)	101	89-112		%	1		09/20/16 23:27

Print Date: 09/27/2016 3:21:55PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of APT2-DEV-TK

Client Sample ID: **APT2-DEV-TK** Client Project ID: **105.00148.16001 Kenai Wells** Lab Sample ID: 1165575001 Lab Project ID: 1165575

Collection Date: 09/19/16 16:50 Received Date: 09/20/16 11:23 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS16209 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 09/20/16 23:27 Container ID: 1165575001-B Prep Batch: VXX29611 Prep Method: SW5030B Prep Date/Time: 09/20/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/27/2016 3:21:55PM

J flagging is activated

Results of APT2-DEV-TK Client Sample ID: APT2-DEV-TK Client Project ID: 105.00148.16001 Ke Lab Sample ID: 1165575001 Lab Project ID: 1165575	R M Se	eceived Da	ate: 09/19/16 ate: 09/20/16 r (Surface, E	11:23			
Results by Waters Department Parameter pH Batch Information	<u>Result Qual</u> 8.30	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.100	<u>Units</u> pH units	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 09/23/16 18:52
Analytical Batch: WTI4514 Analytical Method: SM21 4500-H B Analyst: KBE Analytical Date/Time: 09/23/16 18:52 Container ID: 1165575001-E							

J flagging is activated

Method Blank

Blank ID: MB for HBN 1743214 [MXX/30196] Blank Lab ID: 1352349

QC for Samples: 1165575001

Results by SW6020A

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Cadmium	1.00U	2.00	0.620	ug/L
Chromium	2.00U	4.00	1.30	ug/L
Lead	0.500U	1.00	0.310	ug/L
Mercury	0.100U	0.200	0.0620	ug/L
Selenium	10.0U	20.0	6.20	ug/L
Silver	1.00U	2.00	0.620	ug/L

Batch Information

Analytical Batch: MMS9548 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 9/26/2016 9:47:24AM

Analytical Batch: MMS9549 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 9/26/2016 3:08:24PM Prep Batch: MXX30196 Prep Method: SW3010A Prep Date/Time: 9/23/2016 1:36:00PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Prep Batch: MXX30196 Prep Method: SW3010A Prep Date/Time: 9/23/2016 1:36:00PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 09/27/2016 3:21:56PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165575 [MXX30196] Blank Spike Lab ID: 1352350 Date Analyzed: 09/26/2016 09:51

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165575001

Results by SW6020A

		Blank Spike	(ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	CL
rsenic	1000	1000	100	(84-116)
Barium	1000	999	100	(86-114)
Cadmium	100	101	101	(87-115)
Chromium	400	415	104	(85-116)
_ead	1000	990	99	(88-115)
<i>Mercury</i>	10	10.2	102	(70-124)
Selenium	1000	986	99	(80-120)
Silver	100	101	101	(85-116)

Analytical Batch: MMS9548 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Prep Batch: MXX30196 Prep Method: SW3010A Prep Date/Time: 09/23/2016 13:36 Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/27/2016 3:21:58PM

Matrix Spike Summary

Original Sample ID: 1352351 MS Sample ID: 1352352 MS MSD Sample ID: 1352353 MSD Analysis Date: 09/26/2016 9:56 Analysis Date: 09/26/2016 10:00 Analysis Date: 09/26/2016 10:05 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165575001

Results by SW6020A

		Mat	rix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
Arsenic	3.89J	1000	966	96	1000	955	95	84-116	1.10	(< 20)
Barium	10.2	1000	1060	105	1000	1050	104	86-114	0.24	(< 20)
Cadmium	1.00U	100	97.4	97	100	96.3	96	87-115	1.11	(< 20)
Chromium	2.70J	400	399	99	400	398	99	85-116	0.07	(< 20)
Lead	0.500U	1000	954	95	1000	956	96	88-115	0.21	(< 20)
Mercury	0.108J	10.0	3.51	34 *	10.0	3.88	38 *	70-124	10.10	(< 20)
Selenium	10.0U	1000	935	94	1000	931	93	80-120	0.41	(< 20)
Silver	1.00U	100	35.7	36 *	100	37.6	38 *	85-116	5.16	(< 20)

Batch Information

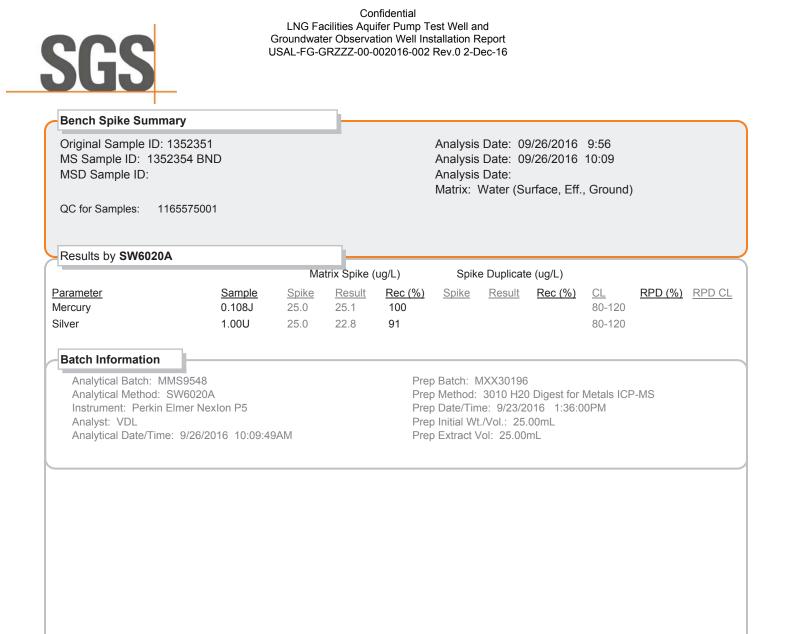
Analytical Batch: MMS9548 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 9/26/2016 10:00:52AM Prep Batch: MXX30196 Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 9/23/2016 1:36:00PM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 09/27/2016 3:21:58PM

Matrix Spike Summary

Original Sample ID: 1354078 MS Sample ID: 1354079 MS MSD Sample ID: 1354080 MSD Analysis Date: 09/26/2016 10:45 Analysis Date: 09/26/2016 10:50 Analysis Date: 09/26/2016 10:54 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165575001


Results by SW6020A

		Ma	trix Spike (ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Arsenic	2.48J	1000	1020	102	1000	992	99	84-116	2.84	(< 20)
Barium	28.1	1000	1080	105	1000	1060	104	86-114	1.39	(< 20)
Cadmium	1.00U	100	100	100	100	101	101	87-115	0.67	(< 20)
Chromium	2.00U	400	403	101	400	396	99	85-116	1.58	(< 20)
Lead	0.324J	1000	998	100	1000	991	99	88-115	0.74	(< 20)
Mercury	0.126J	10.0	10.2	101	10.0	10.2	101	70-124	0.42	(< 20)
Selenium	10.0U	1000	986	99	1000	973	97	80-120	1.41	(< 20)
Silver	1.00U	100	97.7	98	100	98.6	99	85-116	0.91	(< 20)

Batch Information

Analytical Batch: MMS9548 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5 Analyst: VDL Analytical Date/Time: 9/26/2016 10:50:18AM Prep Batch: MXX30196 Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 9/23/2016 1:36:00PM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 09/27/2016 3:21:58PM

Print Date: 09/27/2016 3:21:58PM

SGS North America Inc.

Matrix: Water (Surface, Eff., Ground)

Method Blank

Blank ID: MB for HBN 1743673 [VXX/29611] Blank Lab ID: 1353867

QC for Samples: 1165575001

Results by SW8260B

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.500U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	5.00U	10.0	3.10	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.300	ug/L

Print Date: 09/27/2016 3:21:59PM

SGS North America Inc.

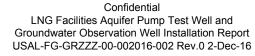
200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Method Blank

Blank ID: MB for HBN 1743673 [VXX/29611] Blank Lab ID: 1353867

QC for Samples: 1165575001


Results by SW8260B

Parameter	Results	LOQ/CL	DL	<u>Units</u>
Chloromethane	0.390J	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	5.00U	10.0	3.10	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	118	81-118		%
4-Bromofluorobenzene (surr)	98.4	85-114		%
Toluene-d8 (surr)	93.2	89-112		%

Print Date: 09/27/2016 3:21:59PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	Groundwater C	bservation Well Installation Report ZZ-00-002016-002 Rev.0 2-Dec-16
- Method Blank]
Blank ID: MB for HE Blank Lab ID: 1353	3N 1743673 [VXX/29611] 367	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1165575001 Results by SW8260		
Parameter	Results	LOQ/CL DL Units
Batch Information	<u> </u>	
Analytical Batch: Analytical Method:		Prep Batch: VXX29611 Prep Method: SW5030B

Print Date: 09/27/2016 3:21:59PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165575 [VXX29611] Blank Spike Lab ID: 1353868 Date Analyzed: 09/20/2016 15:59 Spike Duplicate ID: LCSD for HBN 1165575 [VXX29611] Spike Duplicate Lab ID: 1353869 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165575001

Results by SW8260B

Blank Spike (ug/L) Spike Duplicate (ug/L)									
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	35.6	119	30	36.7	122	(78-124)	3.00	(< 20)
1,1,1-Trichloroethane	30	35.6	119	30	34.1	114	(74-131)	4.30	(< 20)
1,1,2,2-Tetrachloroethane	30	27.6	92	30	30.2	101	(71-121)	9.20	(< 20)
1,1,2-Trichloroethane	30	31.0	103	30	31.0	103	(80-119)	0.13	(< 20)
1,1-Dichloroethane	30	34.0	113	30	30.3	101	(77-125)	11.50	(< 20)
1,1-Dichloroethene	30	32.8	109	30	31.9	106	(71-131)	2.90	(< 20)
1,1-Dichloropropene	30	33.0	110	30	33.2	111	(79-125)	0.57	(< 20)
1,2,3-Trichlorobenzene	30	31.3	104	30	36.0	120	(69-129)	14.10	(< 20)
1,2,3-Trichloropropane	30	29.5	98	30	31.7	106	(73-122)	7.20	(< 20)
1,2,4-Trichlorobenzene	30	32.0	107	30	34.6	115	(69-130)	7.60	(< 20)
1,2,4-Trimethylbenzene	30	29.9	100	30	32.1	107	(79-124)	7.40	(< 20)
1,2-Dibromo-3-chloropropane	30	31.9	106	30	33.5	112	(62-128)	4.60	(< 20)
1,2-Dibromoethane	30	32.8	109	30	33.8	113	(77-121)	3.10	(< 20)
1,2-Dichlorobenzene	30	31.3	104	30	31.9	106	(80-119)	1.90	(< 20)
1,2-Dichloroethane	30	33.6	112	30	32.5	108	(73-128)	3.40	(< 20)
1,2-Dichloropropane	30	32.3	108	30	34.1	114	(78-122)	5.30	(< 20)
1,3,5-Trimethylbenzene	30	30.3	101	30	31.7	106	(75-124)	4.50	(< 20)
1,3-Dichlorobenzene	30	31.4	105	30	32.9	110	(80-119)	4.60	(< 20)
1,3-Dichloropropane	30	31.3	104	30	31.9	106	(80-119)	1.80	(< 20)
1,4-Dichlorobenzene	30	31.9	106	30	33.5	112	(79-118)	5.10	(< 20)
2,2-Dichloropropane	30	35.4	118	30	32.9	110	(60-139)	7.60	(< 20)
2-Butanone (MEK)	90	103	114	90	105	116	(56-143)	1.80	(< 20)
2-Chlorotoluene	30	30.6	102	30	33.0	110	(79-122)	7.50	(< 20)
2-Hexanone	90	96.1	107	90	100	111	(57-139)	4.00	(< 20)
4-Chlorotoluene	30	29.5	98	30	31.1	104	(78-122)	5.30	(< 20)
4-Isopropyltoluene	30	30.7	102	30	32.1	107	(77-127)	4.60	(< 20)
4-Methyl-2-pentanone (MIBK)	90	105	117	90	99.8	111	(67-130)	5.10	(< 20)
Benzene	30	31.2	104	30	31.7	106	(79-120)	1.70	(< 20)
Bromobenzene	30	31.2	104	30	32.5	108	(80-120)	4.10	(< 20)
Bromochloromethane	30	34.6	115	30	33.1	110	(78-123)	4.60	(< 20)
Bromodichloromethane	30	34.7	116	30	35.5	118	(79-125)	2.30	(< 20)
Bromoform	30	37.8	126	30	39.9	133	* (66-130)	5.30	(< 20)
Bromomethane	30	42.9	143	* 30	46.2	154	* (53-141)	7.40	(< 20)
Carbon disulfide	45	45.8	102	45	45.3	101	(64-133)	1.10	(< 20)

Print Date: 09/27/2016 3:22:00PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165575 [VXX29611] Blank Spike Lab ID: 1353868 Date Analyzed: 09/20/2016 15:59 Spike Duplicate ID: LCSD for HBN 1165575 [VXX29611] Spike Duplicate Lab ID: 1353869 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165575001

Results by SW8260B

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	36.1	120	30	34.3	114	(72-136)	5.00	(< 20)
Chlorobenzene	30	33.0	110	30	33.8	113	(82-118)	2.40	(< 20)
Chloroethane	30	33.2	111	30	33.6	112	(60-138)	1.00	(< 20)
Chloroform	30	34.4	115	30	32.4	108	(79-124)	5.90	(< 20)
Chloromethane	30	45.7	152	* 30	51.1	170	* (50-139)	11.20	(< 20)
cis-1,2-Dichloroethene	30	31.5	105	30	29.0	97	(78-123)	8.20	(< 20)
cis-1,3-Dichloropropene	30	34.2	114	30	32.2	107	(75-124)	6.10	(< 20)
Dibromochloromethane	30	36.0	120	30	36.9	123	(74-126)	2.30	(< 20)
Dibromomethane	30	32.1	107	30	31.6	105	(79-123)	1.80	(< 20)
Dichlorodifluoromethane	30	31.3	104	30	31.8	106	(32-152)	1.60	(< 20)
Ethylbenzene	30	31.7	106	30	32.9	110	(79-121)	3.60	(< 20)
Freon-113	45	53.3	118	45	52.1	116	(70-136)	2.30	(< 20)
Hexachlorobutadiene	30	33.0	110	30	35.1	117	(66-134)	6.10	(< 20)
Isopropylbenzene (Cumene)	30	33.2	111	30	35.7	119	(72-131)	7.20	(< 20)
Methylene chloride	30	30.5	102	30	30.3	101	(74-124)	0.59	(< 20)
Methyl-t-butyl ether	45	59.8	133	* 45	56.1	125	* (71-124)	6.50	(< 20)
Naphthalene	30	30.8	103	30	36.1	120	(61-128)	15.80	(< 20)
n-Butylbenzene	30	29.6	99	30	31.5	105	(75-128)	6.10	(< 20)
n-Propylbenzene	30	29.4	98	30	31.3	104	(76-126)	6.10	(< 20)
o-Xylene	30	33.2	111	30	35.7	119	(78-122)	7.20	(< 20)
P & M -Xylene	60	64.8	108	60	67.4	112	(80-121)	4.00	(< 20)
sec-Butylbenzene	30	29.7	99	30	31.5	105	(77-126)	5.70	(< 20)
Styrene	30	33.6	112	30	35.9	120	(78-123)	6.60	(< 20)
tert-Butylbenzene	30	30.2	101	30	31.9	106	(78-124)	5.50	(< 20)
Tetrachloroethene	30	35.0	117	30	35.6	119	(74-129)	1.70	(< 20)
Toluene	30	30.5	102	30	29.9	100	(80-121)	1.90	(< 20)
trans-1,2-Dichloroethene	30	34.4	115	30	31.6	105	(75-124)	8.60	(< 20)
trans-1,3-Dichloropropene	30	32.5	108	30	32.9	110	(73-127)	1.30	(< 20)
Trichloroethene	30	33.3	111	30	33.5	112	(79-123)	0.45	(< 20)
Trichlorofluoromethane	30	36.9	123	30	35.6	119	(65-141)	3.60	(< 20)
Vinyl acetate	30	35.4	118	30	33.4	111	(54-146)	5.80	(< 20)
Vinyl chloride	30	33.9	113	30	37.9	126	(58-137)	11.10	(< 20)
Xylenes (total)	90	98.0	109	90	103	115	(79-121)	5.10	(< 20)

Print Date: 09/27/2016 3:22:00PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165575 [VXX29611] Blank Spike Lab ID: 1353868 Date Analyzed: 09/20/2016 15:59 Spike Duplicate ID: LCSD for HBN 1165575 [VXX29611] Spike Duplicate Lab ID: 1353869 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165575001

Results by SW8260B Blank Spike (%) Spike Duplicate (%) Parameter <u>Spike</u> Result Rec (%) <u>Spike</u> Result Rec (%) <u>CL</u> <u>RPD (%)</u> Surrogates 1,2-Dichloroethane-D4 (surr) 30 105 105 30 108 108 (81-118) 3.50 4-Bromofluorobenzene (surr) 30 92.9 93 30 96 96 (85-114) 3.40 Toluene-d8 (surr) 30 99.4 99 30 96.3 96 3.20 (89-112)

Batch Information

Analytical Batch: VMS16209 Analytical Method: SW8260B Instrument: VPA 780/5975 GC/MS Analyst: TJT Prep Batch: VXX29611 Prep Method: SW5030B Prep Date/Time: 09/20/2016 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/27/2016 3:22:00PM

RPD CL

Duplicate Sample Sumr	mary							
Original Sample ID: 1165651001 Duplicate Sample ID: 1354465 QC for Samples: 1165575001			Analysis Date: 09/23/2016 22:43 Matrix: Water (Surface, Eff., Ground)					
Results by SM21 4500-H	I B							
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL			
рН	8.40	8.40	pH units	0.00	(< 5)			
Batch Information								
Analytical Batch: WTI451 Analytical Method: SM21 Instrument: Titration Analyst: KBE	4 1 4500-Н В							

Print Date: 09/27/2016 3:22:01PM

SGS North America Inc.

Blank Spike Summary				
Blank Spike ID: LCS for HB Blank Spike Lab ID: 135446 Date Analyzed: 09/23/2016	2	WTI4514]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 116557	5001			
Results by SM21 4500-H B			_	
		ank Spike (
<u>Parameter</u> pH	<u>Spike</u> 7	<u>Result</u> 7.03	<u>Rec (%)</u> 100	<u>CL</u> (99-101)
Batch Information				
Analytical Batch: WTI4514 Analytical Method: SM21 450 Instrument: Titration Analyst: KBE	00-Н В			Prep Batch: Prep Method: Prep Date/Time: Spike Init Wt./Vol.: 7 pH units Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/27/2016 3:22:02PM

(See attached Sample Receipt Form) Chain of Custody Seal: (Circle) Data Deliverable Requirements: 10 INC REMARKS/ LOC ID 5-day TAT RCRA 8 metals = Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, 0 Cooler ID LVL2 30 Requested Furnaround Time and/or Special Instructions: 165575 SIGTININ IN INAN (See attached Sample Receipt Form) http://www.sgs.com/terms-and-conditions DOD Project? Yes No Preservative 5-day TAT Selenium, and Silver Omissions may delay t_i Section 4 Instructions: Sections 1 Cooler ID: 8-H005# MS Kq Hd 34 OC PA 8260B SGS North America Inc. CHAIN OF CUSTODY RECORD CONIT. RCRA Metals, Total Received For Laboratory By: Pres: Type: (Multi-Incre-mental) Comp Grab Section 3 × 5 m # 0 OZH 4 z шсs 5 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301
 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557 Received By: way Becerved By: *<u>éeived By</u>* MATRIX VARIO 105.00148.16001 332001 16:50 08:00 لرجع اا TIME HH:MM して jgray@slrconsulting.com Time Time Time ime 264-6965 mm/dd/yy 0119116 DATE 1-02-1 102461 ON 191 PHONE #: QUOTE #: Date Date Date E-MAIL: Project #: P.O.#: APT2-06-1-1-04 SAMPLE IDENTIFICATION len SLR International SLR International Jason Gray Kenai Wells Jason Gray Relinquished By: (1) Relinquished By: (4) Relinquished/Bý: (2) Relingdished By: (3) いいい REPORTS TO INVOICE TO: RESERVED for lab use CONTACT: PROJECT NAME: CLIENT: h Section 1 Section 5 Section 2 24 of 28

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

Date	516 SLR	
٩	565	
Collect 🛛 🛛 .	Prepay □ Account □	Advance Charges
lob #	PO#	
	1 Carl	n A
	Mint antes	Laun
	714 3379	
99990000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·	
	4405	E71
	1163	5574 —
		·

25 of 28

	AIRPORT DEPARTL		A 09/20/1	8 08:41	090363	808	8 7143379	Rush
	PER'S NAM R JAS€		ESS & PHONE	SHIPP	H7752	R NOT AIR WAYBILL (AIR CONSIGNMENT NO	Rayne	4700 Old International Airport Road Anchorage, Alaska 99502
CONS			AK 9		9072238578 NEE'S ACCOUNT NUME	(except as noted) for carrier THE COMPANIES TARIF CONCERNING CARRIER	age SUBJECT TO THE CO FS. THE SHIPPER'S ATTE S' LIMITATION OF LIABILI	pled in apparent good order and condition INDITIONS OF CONTRACT AS LISTED IN ENTION IS DRAWN TO THE NOTICE TY. Shipper may increase such limitation of aying a supplemental charge if required.
1000	WEST		ER RD	L		Received in Good Condition		Data
1	CHOR		AK 99	9518	9075622343	TO EXPEDITE MOVEMENT, 8	HIPMENT MAY BE DIVERTED	Date TO MOTOR OR OTHER CARRIER AS PER TARIFF REON
ISSUI	NG CARRIE	ER'S AGEN	NT NAME, CITY & PH	ONE		ALSO NOTIFY NAME & A	DDRESS	:
AGENT	S IATA CODI	E		ACCOUNT NO.		ACCOUNTING INFORMA	TION 7147795	
AIRPOR Kena	5			Declared Value \$ 0.00	Insured Amount \$ 0.00	— Acc#: H7752 SLF	R INTERNATIONA	L CORP.
	BY FIF	RST	*** * 1/#/			сомментя Rush depts 829 a po 105.00148.160		10 10
	AIRPORT OF Anch	norage				10:25	01-20-16	
No. Of Pleces Rcp	Gross Weight	kg Ra Ib	Commodity Item No.	Chargeable Weight	Rate/Charge	Total	Ne	ature and Quantily of Goods
1	30					\$54.59		1165574
	PREP/ \$54.		WEIGHT CHARGE	COLLECT		R CHARGES AND DESCRIPTION	DN	
	\$0.0	V	ALUATION CHARGE			DESCRIPTION		
	\$3.4	FE	DERAL EXCISE TAX		-			
	\$0.0	TOTAL OT	HER CHARGES DUE AG	ENT	-		(1) 7333623	ZMAT
	\$0.C		ER CHARGES DUE CAR	RIER	COMPANIES TARI	FS, accepts that carrier's liability	of are correct, agrees to the	e CONDITIONS AS LISTED IN THE
	TOTAL PR \$58.0		<u> </u>	OTAL COLLECT	part of the consigning	e for carriage is declared on the tent contains restricted articles.	face hereof subject to an a uch part is described by pa	dditional charge and that insofar as any ame and is in proper condition for carriage ational shipments, the current International
NIAK - (90 ARROW - ETHEL -(9 EADHORS	3E - (907) 243 7) 675-4572 (907) 852-530 107) 543-3825 SE - (907) 659	00 -9222	GALENA -(90 KOTZEBUE - NOME - (907) ST. MARYS -	(907) 442-3020) 443-7595 (907) 438-2247 T - (907) 624-3595	Air Transport Assoc Paid By Shipp Printed Name and Ti Signature	iation's Restricted Articles Regul	ations.	

Consignee Copy

e-SAMPLE RECEIPT FORM

	1165575			1 1 6 5 5 7 5		
Review Criteria	Y/N (yes,	/no)	Exc	eptions Note	ed below	
		. [exemption perm	nitted if sampler	hand carries/delivers.	
Were Custody Seals intact? Note # 8	location Y			1F-1B		
COC accompanied	samples? Y					
**exemption perm	itted if chilled 8	collected <8	hrs ago or chlling no	ot required (i.e.,	waste, oil)	
	Y	Cooler ID:	1	@ 3	.9 °C Therm ID:	D20
	Y	Cooler ID:		@	°C Therm ID:	
Temperature blank compliant* (i.e., 0-6 °C a		Cooler ID:		@	°C Therm ID:	
	Y	Cooler ID:		@	°C Therm ID:	
	Y	Cooler ID:		@	°C Therm ID:	
*If >6°C, were samples collected <8 ho	ırs ago? Y	l				
If <0°C, were sample containers	ice free? Y					
If samples received <u>without</u> a temperature blank, the "cooler temperat be documented in lieu of the temperature blank & " COOLER TEMP " wi noted to the right. In cases where neither a temp blank nor cooler tem obtained, note "ambient" or "chilled".	ll be					
Note: Identify containers received at non-compliant temperature . Us FS-0029 if more space is needed.	e form					
Were samples received within h	old time?	Note: Refer	to form F-083 "Sam	ple Guide" for h	old times.	
Do samples match COC** (i.e.,sample IDs,dates/times co	ollected)? Y	1				
**Note: If times differ <1hr, record details & login	per COC.	Ĩ				
Were analyses requested unam	biguous? Y					
			***Exemption p	permitted for me	etals (e.g,200.8/6020A).	
Were proper containers (type/mass/volume/preservative*	**)used? Y	<u>;</u>				
IF APPLICABLE		Ĩ				
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples? Y					
Were all VOA vials free of headspace (i.e., bubbles	<mark>≤ 6mm)?</mark> Y					
Were all soil VOAs field extracted with Me	OH+BFB? Y					
Note to Client: Any "no" answer above indicate	s non-compliand	e with standa	ard procedures and	may impact dat	a quality.	
Addit	ional notes (if applicab	le):			

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1165575001-A	HNO3 to pH < 2 $$	ОК			
1165575001-B	HCL to pH < 2	ОК			
1165575001-C	HCL to $pH < 2$	ОК			
1165575001-D	HCL to pH < 2	ОК			
1165575001-E	No Preservative Required	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell St Suite 200 Anchorage, AK 99503 (907)222-1112

Report Number: **1165243**

Client Project: Kenai Wells AKLNG

Dear Jason Gray,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Ind	C. C. SGS North America Inc. Environmental Services - Alaska Division Project Manager	Justin Nelson 2016.09.12 15:51:08 -08'00'
Justin Nelson Project Manager Justin.Nelson@sgs.com	Date	

Print Date: 09/12/2016 8:26:35AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1165243 Project Name/Site: Kenai Wells AKLNG Project Contact: Jason Gray

Refer to sample receipt form for information on sample condition.

APT-3-DEV-TK-0916 (1165243001) PS

6020A - The metals LOQ for multiple analytes was elevated due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/12/2016 8:26:36AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 09/12/2016 8:26:38AM

Note:

Sample Summary							
<u>Client Sample ID</u> APT-3-DEV-TK-0916 TB-1-0916	Lab Sample ID 1165243001 1165243002	<u>Collected</u> 09/06/2016 09/06/2016	Received 09/07/2016 09/07/2016	<u>Matrix</u> Water (Surface, Eff., Ground) Water (Surface, Eff., Ground)			
<u>Method</u> SW6020A SM21 4500-H B SW8260B	<u>Method Des</u> Metals by IC pH Analysis Volatile Orga	P-MS	(W) FULL				

Print Date: 09/12/2016 8:26:39AM

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: APT-3-DEV-TK-0916			
Lab Sample ID: 1165243001	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	77.5	ug/L
	Barium	361	ug/L
	Chromium	101	ug/L
	Lead	23.7	ug/L
Volatile GC/MS	1,2,4-Trimethylbenzene	2.30	ug/L
	1,3,5-Trimethylbenzene	0.670J	ug/L
	n-Propylbenzene	0.400J	ug/L
	Toluene	3.24	ug/L
	Trichloroethene	2.62	ug/L
Waters Department	рН	8.80	pH units
Client Sample ID: TB-1-0916			
Lab Sample ID: 1165243002	Parameter	Result	<u>Units</u>
Volatile GC/MS	Chloromethane	0.570J	ug/L

Print Date: 09/12/2016 8:26:40AM

SGS North America Inc.

Results of APT-3-DEV-TK-0916

Client Sample ID: **APT-3-DEV-TK-0916** Client Project ID: **Kenai Wells AKLNG** Lab Sample ID: 1165243001 Lab Project ID: 1165243 Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Arsenic	77.5	25.0	7.50	ug/L	5		09/09/16 10:40
Barium	361	15.0	4.70	ug/L	5		09/09/16 10:40
Cadmium	5.00 U	10.0	3.10	ug/L	5		09/09/16 10:40
Chromium	101	20.0	6.50	ug/L	5		09/09/16 10:40
Lead	23.7	5.00	1.55	ug/L	5		09/09/16 10:40
Mercury	0.500 U	1.00	0.310	ug/L	5		09/09/16 10:40
Selenium	50.0 U	100	31.0	ug/L	5		09/09/16 10:40
Silver	5.00 U	10.0	3.10	ug/L	5		09/09/16 10:40

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Analyst: VDL Analytical Date/Time: 09/09/16 10:40 Container ID: 1165243001-D Prep Batch: MXX30164 Prep Method: SW3010A Prep Date/Time: 09/07/16 12:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 25 mL

Print Date: 09/12/2016 8:26:41AM

J flagging is activated

Results of APT-3-DEV-TK-0916

Client Sample ID: **APT-3-DEV-TK-0916** Client Project ID: **Kenai Wells AKLNG** Lab Sample ID: 1165243001 Lab Project ID: 1165243 Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Popult Qual	LOQ/CL		Lipito	DE	Allowable	Data Analyzad
Parameter 1,1,1,2-Tetrachloroethane	<u>Result</u> Qual 0.250 U	0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 09/07/16 21:53
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,2,4-Trimethylbenzene	2.30	1.00	0.310	ug/L	1		09/07/16 21:53
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,3,5-Trimethylbenzene	0.670 J	1.00	0.310	ug/L	1		09/07/16 21:53
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
Benzene	0.200 U	0.400	0.120	ug/L	1		09/07/16 21:53
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Bromomethane	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53

Print Date: 09/12/2016 8:26:41AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of APT-3-DEV-TK-0916

Client Sample ID: **APT-3-DEV-TK-0916** Client Project ID: **Kenai Wells AKLNG** Lab Sample ID: 1165243001 Lab Project ID: 1165243 Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		09/07/16 21:53
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/07/16 21:53
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/07/16 21:53
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
Naphthalene	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
n-Propylbenzene	0.400 J	1.00	0.310	ug/L	1		09/07/16 21:53
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/16 21:53
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Styrene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Toluene	3.24	1.00	0.310	ug/L	1		09/07/16 21:53
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Trichloroethene	2.62	1.00	0.310	ug/L	1		09/07/16 21:53
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/07/16 21:53
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		09/07/16 21:53
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/16 21:53
Surrogates							
1,2-Dichloroethane-D4 (surr)	97	81-118		%	1		09/07/16 21:53
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/07/16 21:53
Toluene-d8 (surr)	99.4	89-112		%	1		09/07/16 21:53

Print Date: 09/12/2016 8:26:41AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

8 of 30

Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:
Prep Batch: VXX29519 Prep Method: SW5030B Prep Date/Time: 09/07/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/12/2016 8:26:41AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Results of APT-3-DEV-TK-0916									
Client Sample ID: APT-3-DEV-TK-091 Client Project ID: Kenai Wells AKLNG Lab Sample ID: 1165243001 Lab Project ID: 1165243		R M Se	Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): .ocation:						
Results by Waters Department			_						
<u>Parameter</u> pH	<u>Result</u> Qual 8.80	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.100	<u>Units</u> pH units	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 09/07/16 15:57		
Batch Information Analytical Batch: WTI4507 Analytical Method: SM21 4500-H B Analyst: KBE Analytical Date/Time: 09/07/16 15:57 Container ID: 1165243001-E									

Print Date: 09/12/2016 8:26:41AM

J flagging is activated

Member of SGS Group

Results of TB-1-0916

Client Sample ID: **TB-1-0916** Client Project ID: **Kenai Wells AKLNG** Lab Sample ID: 1165243002 Lab Project ID: 1165243 Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Devenuelor	Desult Qual	1.00/01		Linite		Allowable
Parameter 1,1,1,2-Tetrachloroethane	<u>Result Qual</u> 0.250 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	Limits Date Analyzed 09/07/16 17:30
1,1,1-Trichloroethane	0.250 U	1.00	0.310	-	1	09/07/16 17:30
	0.250 U			ug/L	1	
1,1,2,2-Tetrachloroethane	0.250 U 0.500 U	0.500 1.00	0.150	ug/L	1	09/07/16 17:30 09/07/16 17:30
1,1,2-Trichloroethane			0.310	ug/L		
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/07/16 17:30
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/07/16 17:30
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/07/16 17:30
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/07/16 17:30
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/07/16 17:30
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/07/16 17:30
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/07/16 17:30
Benzene	0.200 U	0.400	0.120	ug/L	1	09/07/16 17:30
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/07/16 17:30
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
Bromomethane	5.00 U	10.0	3.10	ug/L	1	09/07/16 17:30
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/07/16 17:30
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/07/16 17:30
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/07/16 17:30

Print Date: 09/12/2016 8:26:41AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

11 of 30

Results of TB-1-0916

Client Sample ID: **TB-1-0916** Client Project ID: **Kenai Wells AKLNG** Lab Sample ID: 1165243002 Lab Project ID: 1165243 Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1		09/07/16 17:30
Chloromethane	0.570 J	1.00	0.310	ug/L	1		09/07/16 17:30
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/07/16 17:30
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/07/16 17:30
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/07/16 17:30
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		09/07/16 17:30
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/07/16 17:30
Naphthalene	5.00 U	10.0	3.10	ug/L	1		09/07/16 17:30
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/16 17:30
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Styrene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/07/16 17:30
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1		09/07/16 17:30
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/16 17:30
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.6	81-118		%	1		09/07/16 17:30
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/07/16 17:30
Toluene-d8 (surr)	98.5	89-112		%	1		09/07/16 17:30

Print Date: 09/12/2016 8:26:41AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of TB-1-0916

Client Sample ID: **TB-1-0916** Client Project ID: **Kenai Wells AKLNG** Lab Sample ID: 1165243002 Lab Project ID: 1165243 Collection Date: 09/06/16 14:00 Received Date: 09/07/16 08:00 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS16151 Analytical Method: SW8260B Analyst: TJT Analytical Date/Time: 09/07/16 17:30 Container ID: 1165243002-A Prep Batch: VXX29519 Prep Method: SW5030B Prep Date/Time: 09/07/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/12/2016 8:26:41AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Method Blank

Blank ID: MB for HBN 1742743 [MXX/30164] Blank Lab ID: 1350305

QC for Samples: 1165243001

Results by SW6020A

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Unit</u>
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/l
Cadmium	1.00U	2.00	0.620	ug/L
Chromium	2.00U	4.00	1.30	ug/L
Lead	0.500U	1.00	0.310	ug/L
Mercury	0.100U	0.200	0.0620	ug/L
Selenium	10.0U	20.0	6.20	ug/L
Silver	1.00U	2.00	0.620	ug/L

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 9/9/2016 8:52:22AM Prep Batch: MXX30164 Prep Method: SW3010A Prep Date/Time: 9/7/2016 12:00:59PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 09/12/2016 8:26:42AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165243 [MXX30164] Blank Spike Lab ID: 1350306 Date Analyzed: 09/09/2016 08:56

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001

Results by SW6020A

<u>arameter</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	
rsenic	1000	1020	102	(84-116)	
Barium	1000	1000	100	(86-114)	
Cadmium	100	101	101	(87-115)	
Chromium	400	426	106	(85-116)	
ead	1000	1030	103	(88-115)	
lercury	10	10.7	107	(70-124)	
Selenium	1000	1020	102	(80-120)	
Silver	100	105	105	(85-116)	

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Prep Batch: MXX30164 Prep Method: SW3010A Prep Date/Time: 09/07/2016 12:00 Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/12/2016 8:26:44AM

Matrix Spike Summary

Original Sample ID: 1350307 MS Sample ID: 1350308 MS MSD Sample ID: 1350309 MSD Analysis Date: 09/09/2016 9:01 Analysis Date: 09/09/2016 9:05 Analysis Date: 09/09/2016 9:10 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001

Results by SW6020A

		Matrix Spike (ug/L)			Spike Duplicate (ug/L)					
Parameter	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	1.97J	1000	1030	103	1000	1010	101	84-116		
Barium	23.5	1000	1070	105	1000	1050	103	86-114		
Cadmium	1.00U	100	104	104	100	102	102	87-115		
Chromium	37.5	400	445	102	400	437	100	85-116		
Lead	3.38	1000	1040	103	1000	1020	102	88-115		
Mercury	0.125J	10.0	10.1	100	10.0	10.8	107	70-124		
Selenium	10.0U	1000	1000	100	1000	991	99	80-120		
Silver	1.00U	100	104	104	100	101	101	85-116		

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer NexIon P5 Analyst: VDL Analytical Date/Time: 9/9/2016 9:05:48AM Prep Batch: MXX30164 Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 9/7/2016 12:00:59PM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 09/12/2016 8:26:45AM

Method Blank

Blank ID: MB for HBN 1742815 [VXX/29519] Blank Lab ID: 1350648 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001, 1165243002

Results by SW8260B

Parameter	Results	LOQ/CL	DL	Units
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.500U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	5.00U	10.0	3.10	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.300	ug/L

Print Date: 09/12/2016 8:26:46AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1742815 [VXX/29519] Blank Lab ID: 1350648 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001, 1165243002

Results by SW8260B

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	2.50U	5.00	1.00	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	5.00U	10.0	3.10	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	98.9	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	98.6	89-112		%

Print Date: 09/12/2016 8:26:46AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	Groundwater C	Dbservation Well Installat ZZ-00-002016-002 Rev.	tion Report				
- Method Blank		·					
Blank ID: MB for HB Blank Lab ID: 13506	N 1742815 [VXX/29519] 648	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1165243001, 1165243 Results by SW8260]					
Parameter	Results	LOQ/CL	DL	<u>Units</u>			
Batch Information	·						
Analytical Batch: \ Analytical Method: Instrument: VSA A Analyst: TJT		Prep Me Prep Da	tch: VXX295 thod: SW50 te/Time: 9/7 ial Wt./Vol.:	30B /2016 6:00:00AM			

Print Date: 09/12/2016 8:26:46AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165243 [VXX29519] Blank Spike Lab ID: 1350649 Date Analyzed: 09/07/2016 13:00 Spike Duplicate ID: LCSD for HBN 1165243 [VXX29519] Spike Duplicate Lab ID: 1350650 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001, 1165243002

Results by SW8260B

ParameterSnikeResultResc (%)SnikeResultResc (%)CLRPD (%)RPD (Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
1,1,1-Trichloroethane 30 33.1 110 30 33.8 112 (74-131) 1.60 (<20) 1,1,2-Trichloroethane 30 31.4 105 30 31.7 106 (80-119) 0.86 (<20) 1,1-Dichloroethane 30 31.4 105 30 31.7 106 (80-119) 0.86 (<20) 1,1-Dichloroethane 30 32.1 107 30 32.6 109 (77-125) 1.80 (<20) 1,1-Dichloropthane 30 33.4 111 30 33.8 113 (69-129) 3.70 (<20) 1,2.3-Trichloroptopane 30 32.3 108 30 33.2 111 (69-130) 1.70 (<20) 1,2.4-Trichlorobenzene 30 32.6 109 30 33.2 111 (69-130) 1.70 (<20) 1,2.4-Trichlorobenzene 30 32.4 108 30 32.2 101 (79-124) 2.00 (<20) 1,2.4-Trichlorobenzene 30 32.4 108 30 32.6 109	Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,2.2-Tetrachloroethane 30 31.2 104 30 31.8 106 (71-121) 2.00 (< 20) 1,1.2-Trichloroethane 30 31.4 105 30 31.7 106 (80.119) 0.86 (< 20) 1,1-Dichloroethane 30 32.1 107 30 32.6 109 (77-125) 1.60 (< 20) 1,1-Dichloroethane 30 33.4 111 30 33.4 113 (79-125) 1.20 (< 20) 1,1-Dichloroptene 30 32.3 108 30 33.6 112 (69-129) 3.70 (< 20) 1,2.4-Trichlorobenzene 30 32.6 109 30 32.2 101 (79-124) 2.00 (< 20) 1,2.4-Trimethylbenzene 30 32.6 109 30.2 101 (79-124) 2.00 (< 20) 1,2.4-Trimethylbenzene 30 32.4 108 30.9 103 10.10 (< 20) 1,2.4-Trimethylbenzene 30 32.3 108 30.9 103 10.01 (< 20)	1,1,1,2-Tetrachloroethane	30	30.0	100	30	29.9	100	(78-124)	0.23	(< 20)
1,1,2-Trichloroethane3031.41053031.7106(80-119)0.86(<20)	1,1,1-Trichloroethane	30	33.1	110	30	33.6	112	(74-131)	1.60	(< 20)
1.1-Dichloroethane 30 32.1 107 30 32.6 109 (77-125) 1.60 (<20) 1.1-Dichloroethene 30 33.8 113 30 34.4 115 (71-131) 1.80 (<20) 1.1-Dichloropropene 30 32.3 108 30 33.8 113 (79-125) 1.20 (<20) 1.2,3-Trichloropenzene 30 32.3 108 30 33.8 113 (79-125) 1.20 (<20) 1.2,4-Trichloropenzene 30 32.6 109 30 33.2 111 (69-130) 1.70 (<20) 1.2,4-Trichloropropane 30 32.6 109 30.2 101 (79-124) 2.00 (<20) 1.2,4-Trinchlybenzene 30 32.6 109 (77-121) 0.58 (<20) 1.2-Dichlorobenzene 30 32.6 109 (77-121) 0.58 (<20) 1.2-Dichloroethane 30 32.3 108 30 32.6 109 (74-122) 0.71 (<20) 1.2-Dichloroethane 30	1,1,2,2-Tetrachloroethane	30	31.2	104	30	31.8	106	(71-121)	2.00	(< 20)
1,1-Dichloroethene 30 33.8 113 30 34.4 115 (71-131) 1.80 (<20) 1,1-Dichloropropene 30 33.4 111 30 33.8 113 (79-125) 1.20 (<20) 1,2,3-Trichloropropene 30 30.6 102 30 31.4 105 (73-122) 2.70 (<20) 1,2,4-Trichlorobenzene 30 32.6 109 30 33.2 111 (69-130) 1.70 (<20) 1,2,4-Trichlorobenzene 30 32.6 109 30.2 101 (79-124) 2.00 (<20) 1,2-Dibromo-3-chloropropane 30 32.4 108 30 32.6 109 (77-121) 0.58 (<20) 1,2-Dichlorobenzene 30 32.4 108 30 32.6 109 (78-122) 0.71 (<20) 1,2-Dichlorobenzene 30 2.8.9 96 30 2.9.3 98 (30.0 100 (75-124) 2.40 (<20) 1,2-Dichlorobenzene 30 31.4 105 30 31.	1,1,2-Trichloroethane	30	31.4	105	30	31.7	106	(80-119)	0.86	(< 20)
1.1-Dichloropropene 30 33.4 111 30 33.8 113 (79-125) 1.20 (<20) 1.2,3-Trichloropropane 30 32.3 108 30 33.6 112 (69-129) 3.70 (<20) 1.2,4-Trinchtoropropane 30 32.6 109 30 33.2 101 (69-130) 1.70 (<20) 1.2,4-Trinchtorybenzene 30 22.6 99 30 33.2 101 (77-121) 0.58 (<20) 1.2-Dibromo-3-chloropropane 30 32.4 108 30 32.6 109 (77-121) 0.58 (<20) 1.2-Dibromoethane 30 32.4 108 30 32.6 109 (77-121) 0.58 (<20) 1.2-Dichlorobenzene 30 32.4 108 30 32.6 109 (77-121) 0.58 (<20) 1.2-Dichlorobenzene 30 32.4 108 30 32.6 109 (73-128) 1.40 (<20) 1.2-Dichlorobenzene 30 30.3 101 30 31.0 103 </th <th>1,1-Dichloroethane</th> <th>30</th> <th>32.1</th> <th>107</th> <th>30</th> <th>32.6</th> <th>109</th> <th>(77-125)</th> <th>1.60</th> <th>(< 20)</th>	1,1-Dichloroethane	30	32.1	107	30	32.6	109	(77-125)	1.60	(< 20)
1.2,3-Trichlorobenzene 30 32.3 108 30 33.6 112 (69.129) 3.70 (<20) 1.2,3-Trichloropropane 30 30.6 102 30 31.4 105 (73.122) 2.70 (<20) 1.2,4-Trinchlorobenzene 30 32.6 109 30 33.2 111 (69.130) 1.70 (<20) 1.2,4-Trinchly/benzene 30 29.6 99 30 30.2 101 (79.124) 2.00 (<20) 1.2-Dibromo-3-chloropropane 30 32.4 108 30 32.6 109 (77.121) 0.58 (<20) 1.2-Dibromo-schhane 30 32.3 108 30 32.6 109 (77.121) 0.58 (<20) 1.2-Dichlorobenzene 30 32.3 108 30 32.6 109 (78.122) 0.71 (<20) 1.3-Dichlorobenzene 30 30.3 101 30 31.6 105 (80-119) 2.20 (<20) 1.3-Dichlorobenzene 30 31.4 105 30 31.5 1	1,1-Dichloroethene	30	33.8	113	30	34.4	115	(71-131)	1.80	(< 20)
1,2,3-Trichloropropane3030.61023031.4105(73-122)2.70(<20)	1,1-Dichloropropene	30	33.4	111	30	33.8	113	(79-125)	1.20	(< 20)
1,2,4-Trichlorobenzene 30 32.6 109 30 33.2 111 (69-130) 1.70 (<20) 1,2,4-Trimethylbenzene 30 29.6 99 30 30.2 101 (79-124) 2.00 (<20) 1,2-Dibromo-3-chloropropane 30 33.9 113 30 35.0 117 (62-128) 3.10 (<20) 1,2-Dibromoethane 30 32.4 108 30 32.6 109 (77-121) 0.58 (<20) 1,2-Dichlorobenzene 30 32.3 108 30 32.6 109 (77-124) 0.58 (<20) 1,2-Dichlorobenzene 30 32.3 108 30 32.6 109 (75-124) 2.40 (<20) 1,3-5-Trimethylbenzene 30 31.4 105 30 31.6 103 (80-119) 0.44 (<20) 1,3-Dichlorobenzene 30 31.4 105 30 31.6 105 (79-118) 0.35 (<20) 2,2-Dichloropropane 30 35.2 117 30 35.6 119 <th>1,2,3-Trichlorobenzene</th> <th>30</th> <th>32.3</th> <th>108</th> <th>30</th> <th>33.6</th> <th>112</th> <th>(69-129)</th> <th>3.70</th> <th>(< 20)</th>	1,2,3-Trichlorobenzene	30	32.3	108	30	33.6	112	(69-129)	3.70	(< 20)
1,2,4-Trimethylbenzene3029.6993030.2101(79-124)2.00(<20)	1,2,3-Trichloropropane	30	30.6	102	30	31.4	105	(73-122)	2.70	(< 20)
1,2-Dibromo-3-chloropropane 30 33.9 113 30 35.0 117 (62-128) 3.10 (<20) 1,2-Dibromoethane 30 32.4 108 30 32.6 109 (77-121) 0.58 (<20) 1,2-Dichlorobenzene 30 30.6 102 30 30.9 103 (80-119) 1.00 (<20) 1,2-Dichloropthane 30 28.9 96 30 29.3 98 (73-128) 1.40 (<20) 1,3-Dichloroptopane 30 32.3 108 30 32.6 109 (78-122) 0.71 (<20) 1,3-Dichloroptopane 30 30.3 101 30 31.0 103 (80-119) 0.44 (<20) 1,3-Dichloroptopane 30 31.4 105 30 31.5 105 (79-118) 0.35 (<20) 2,2-Dichloroptopane 30 31.4 105 30 31.5 105 (79-118) 0.35 (<20) 2,2-Dichloroptopane 30 31.7 102 30 31.3 104 <td< th=""><th>1,2,4-Trichlorobenzene</th><th>30</th><th>32.6</th><th>109</th><th>30</th><th>33.2</th><th>111</th><th>(69-130)</th><th>1.70</th><th>(< 20)</th></td<>	1,2,4-Trichlorobenzene	30	32.6	109	30	33.2	111	(69-130)	1.70	(< 20)
1,2-Dibromoethane3032,41083032.6109(77-121)0.58(< 20)	1,2,4-Trimethylbenzene	30	29.6	99	30	30.2	101	(79-124)	2.00	(< 20)
1,2-Dichlorobenzene3030.61023030.9103(80-119)1.00(<20)	1,2-Dibromo-3-chloropropane	30	33.9	113	30	35.0	117	(62-128)	3.10	(< 20)
1.2-Dichloroethane3028.9963029.398(73-128)1.40(<20)	1,2-Dibromoethane	30	32.4	108	30	32.6	109	(77-121)	0.58	(< 20)
1,2-Dichloropropane3032.31083032.6109(78-122)0.71(<20)	1,2-Dichlorobenzene	30	30.6	102	30	30.9	103	(80-119)	1.00	(< 20)
1,3,5-Trimethylbenzene3029.3983030.0100(75-124)2.40(<20)	1,2-Dichloroethane	30	28.9	96	30	29.3	98	(73-128)	1.40	(< 20)
1,3-Dichlorobenzene3030.31013031.0103(80-119)2.20(<20)	1,2-Dichloropropane	30	32.3	108	30	32.6	109	(78-122)	0.71	(< 20)
1,3-Dichloropropane3031.41053031.6105(80-119)0.44(< 20)	1,3,5-Trimethylbenzene	30	29.3	98	30	30.0	100	(75-124)	2.40	(< 20)
1,4-Dichlorobenzene3031.41053031.5105(79-118)0.35(<20)	1,3-Dichlorobenzene	30	30.3	101	30	31.0	103	(80-119)	2.20	(< 20)
2,2-Dichloropropane3035.21173035.6119(60-139)1.20(<20)	1,3-Dichloropropane	30	31.4	105	30	31.6	105	(80-119)	0.44	(< 20)
2-Butanone (MEK)9099.211090104115(56-143)4.40(<20)	1,4-Dichlorobenzene	30	31.4	105	30	31.5	105	(79-118)	0.35	(< 20)
2-Chlorotoluene3030.71023031.3104(79-122)1.80(< 20)	2,2-Dichloropropane	30	35.2	117	30	35.6	119	(60-139)	1.20	(< 20)
2-Hexanone9098.410990102113(57-139)3.40(< 20)	2-Butanone (MEK)	90	99.2	110	90	104	115	(56-143)	4.40	(< 20)
4-Chlorotoluene3031.61053031.9106(78-122)0.98(< 20)	2-Chlorotoluene	30	30.7	102	30	31.3	104	(79-122)	1.80	(< 20)
4-Isopropyltoluene3030.71023031.1104(77-127)1.40(<20)	2-Hexanone	90	98.4	109	90	102	113	(57-139)	3.40	(< 20)
4-Methyl-2-pentanone (MIBK)9010411690109121(67-130)4.90(< 20)	4-Chlorotoluene	30	31.6		30	31.9		(78-122)	0.98	(< 20)
Benzene3032.61093033.7112(79-120)3.50(< 20)	4-Isopropyltoluene	30	30.7	102	30	31.1	104	(77-127)	1.40	(< 20)
Bromobenzene3030.41013030.6102(80-120)0.79(<20)	4-Methyl-2-pentanone (MIBK)	90	104	116	90	109	121	(67-130)	4.90	(< 20)
Bromochloromethane3031.41053031.8106(78-123)1.20(< 20)	Benzene	30	32.6	109	30	33.7	112	(79-120)	3.50	(< 20)
Bromodichloromethane3032.31083032.4108(79-125)0.46(< 20)	Bromobenzene	30	30.4	101	30	30.6	102	(80-120)	0.79	(< 20)
Bromoform 30 32.2 107 30 32.2 107 (66-130) 0.16 (<20)	Bromochloromethane	30	31.4	105	30	31.8	106	(78-123)	1.20	(< 20)
Bromomethane 30 28.4 95 30 29.1 97 (53-141) 2.50 (< 20)					30			(79-125)	0.46	. ,
	Bromoform	30	32.2	107	30	32.2	107	(66-130)	0.16	. ,
Carbon disulfide 45 50.1 111 45 51.0 113 (64-133) 1.60 (< 20)	Bromomethane	30	28.4	95	30	29.1	97	(53-141)	2.50	. ,
	Carbon disulfide	45	50.1	111	45	51.0	113	(64-133)	1.60	(< 20)

Print Date: 09/12/2016 8:26:48AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165243 [VXX29519] Blank Spike Lab ID: 1350649 Date Analyzed: 09/07/2016 13:00 Spike Duplicate ID: LCSD for HBN 1165243 [VXX29519] Spike Duplicate Lab ID: 1350650 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001, 1165243002

Results by SW8260B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	33.6	112	30	34.1	114	(72-136)	1.70	(< 20)
Chlorobenzene	30	31.7	106	30	31.7	106	(82-118)	0.00	(< 20)
Chloroethane	30	28.4	95	30	26.5	89	(60-138)	6.80	(< 20)
Chloroform	30	29.5	98	30	29.8	99	(79-124)	0.84	(< 20)
Chloromethane	30	28.6	95	30	29.2	97	(50-139)	1.90	(< 20)
cis-1,2-Dichloroethene	30	31.9	106	30	32.5	108	(78-123)	1.90	(< 20)
is-1,3-Dichloropropene	30	34.1	114	30	34.5	115	(75-124)	0.99	(< 20)
Dibromochloromethane	30	30.1	100	30	30.2	101	(74-126)	0.30	(< 20)
Dibromomethane	30	31.0	103	30	31.3	104	(79-123)	0.87	(< 20)
Dichlorodifluoromethane	30	28.2	94	30	28.6	95	(32-152)	1.10	(< 20)
thylbenzene	30	32.6	109	30	32.7	109	(79-121)	0.37	(< 20)
Freon-113	45	52.4	117	45	53.4	119	(70-136)	1.80	(< 20)
lexachlorobutadiene	30	32.6	109	30	33.7	112	(66-134)	3.40	(< 20)
sopropylbenzene (Cumene)	30	30.4	101	30	30.2	101	(72-131)	0.49	(< 20)
lethylene chloride	30	30.5	102	30	32.2	107	(74-124)	5.20	(< 20)
lethyl-t-butyl ether	45	49.6	110	45	50.4	112	(71-124)	1.70	(< 20)
laphthalene	30	31.6	105	30	33.6	112	(61-128)	6.30	(< 20)
-Butylbenzene	30	32.6	109	30	33.2	111	(75-128)	1.80	(< 20)
-Propylbenzene	30	30.0	100	30	30.2	101	(76-126)	0.80	(< 20)
-Xylene	30	33.5	112	30	33.5	112	(78-122)	0.03	(< 20)
P & M -Xylene	60	65.4	109	60	66.1	110	(80-121)	0.97	(< 20)
ec-Butylbenzene	30	30.4	101	30	30.9	103	(77-126)	1.80	(< 20)
Styrene	30	30.2	101	30	30.3	101	(78-123)	0.17	(< 20)
ert-Butylbenzene	30	30.2	101	30	31.0	103	(78-124)	2.90	(< 20)
etrachloroethene	30	33.1	110	30	33.2	111	(74-129)	0.24	(< 20)
oluene	30	31.7	106	30	31.7	106	(80-121)	0.13	(< 20)
rans-1,2-Dichloroethene	30	33.4	111	30	33.9	113	(75-124)	1.50	(< 20)
rans-1,3-Dichloropropene	30	34.0	113	30	34.3	114	(73-127)	1.10	(< 20)
richloroethene	30	32.3	108	30	32.8	109	(79-123)	1.40	(< 20)
richlorofluoromethane	30	31.6	105	30	31.7	106	(65-141)	0.38	(< 20)
/inyl acetate	30	33.7	112	30	34.4	115	(54-146)	1.80	(< 20)
/inyl chloride	30	30.6	102	30	31.2	104	(58-137)	2.00	(< 20)
(ylenes (total)	90	98.9	110	90	99.5	111	(79-121)	0.63	(< 20)

Print Date: 09/12/2016 8:26:48AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1165243 [VXX29519] Blank Spike Lab ID: 1350649 Date Analyzed: 09/07/2016 13:00 Spike Duplicate ID: LCSD for HBN 1165243 [VXX29519] Spike Duplicate Lab ID: 1350650 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1165243001, 1165243002

Results by SW8260B

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	95.1	95	30	95.9	96	(81-118)	0.84	
4-Bromofluorobenzene (surr)	30	95.5	96	30	96.3	96	(85-114)	0.90	
Toluene-d8 (surr)	30	99.4	99	30	98.2	98	(89-112)	1.20	

Batch Information

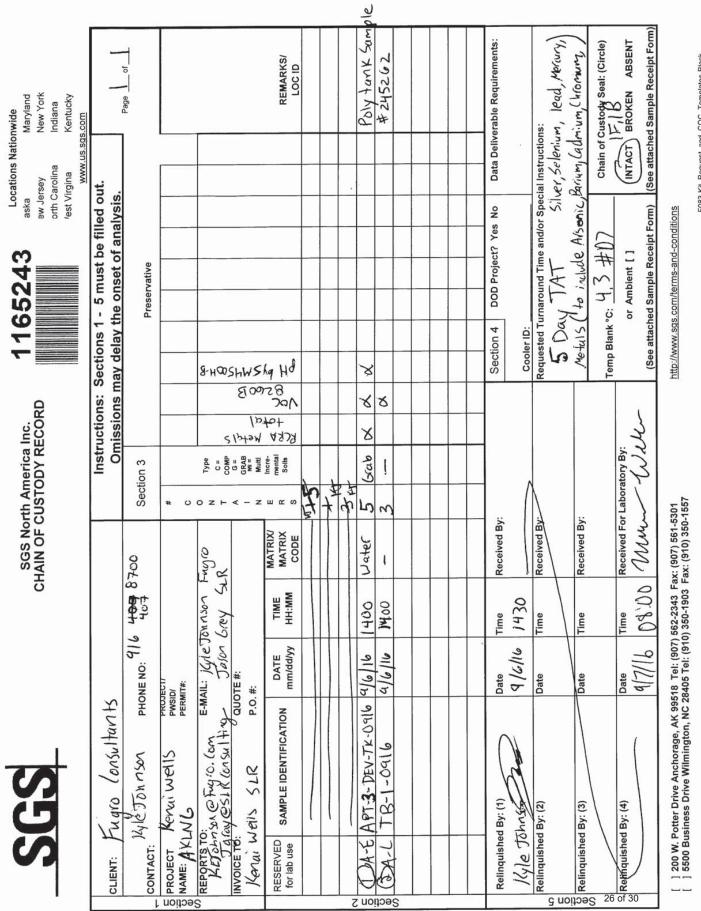
Analytical Batch: VMS16151 Analytical Method: SW8260B Instrument: VSA Agilent GC/MS 7890B/5977A Analyst: TJT Prep Batch: VXX29519 Prep Method: SW5030B Prep Date/Time: 09/07/2016 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/12/2016 8:26:48AM

SGS North America Inc.

Duplicate Sample Sumn	nary				
Original Sample ID: 116 Duplicate Sample ID: 13			Analysis Date: 09 Matrix: Drinking		
QC for Samples:					
1165243001					
Results by SM21 4500-H	В				
NAME	Original	Duplicate	Units	<u>RPD (%)</u>	RPD CL
pН	8.20	8.20	pH units	0.00	(< 5)
Batch Information					
Analytical Batch: WTI450 Analytical Method: SM21 Instrument: Titration Analyst: KBE	7 4500-Н В				

Print Date: 09/12/2016 8:26:49AM


Duplicate Sample Sumr	nary				
Original Sample ID: 116 Duplicate Sample ID: 13	5076001 350563		Analysis Date: 09 Matrix: Water (Su		nd)
QC for Samples:					
1165243001					
Results by SM21 4500-H	B				
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
рН	7.90	7.90	pH units	0.00	(< 5)
Batch Information					
Analytical Batch: WTI450 Analytical Method: SM21 Instrument: Titration Analyst: KBE	7 I 4500-H B				

Print Date: 09/12/2016 8:26:49AM

ank Spike Summary				
ank Spike ID: LCS for HBN ank Spike Lab ID: 1350559 ate Analyzed: 09/07/2016		[WTI4507]	_	Matrix: Water (Surface, Eff., Ground)
C for Samples: 11652430	01			
esults by SM21 4500-H B				
		lank Spike (
i <u>rameter</u> I	<u>Spike</u> 7	<u>Result</u> 6.96	<u>Rec (%)</u> 99	<u>CL</u> (99-101)
tch Information				
Analytical Batch: WTI4507 Analytical Method: SM21 4500 Instrument: Titration Analyst: KBE	-Н В			Prep Batch: Prep Method: Prep Date/Time: Spike Init Wt./Vol.: 7 pH units Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/12/2016 8:26:50AM

-

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

AIRPORT OF DEPARTURE ENA	09/06/16 14:59	090363	808 7	132222	Frgt
SHIPPER'S NAME, ADDRESS &	and the second	SHIPPER'S ACCOUNT NUMBER	NOT AIR WAYBILL (AIR CONSIGNMENT NOTE)	Ravn	4700 Old International Airport Road Anchorage, Alaska 99502
KENAI CONSIGNEE'S NAME, ADDRESS	AK & PHONE	5208081220	It is agreed that the goods dead (except as noted) for carriage S THE COMPANIES TARIFFS. T CONCERNING CARRIFES' I IN	MITATION OF LIABILIT	ted in apparent good order and condition IDITIONS OF CONTRACT AS LISTED IN VTION IS DRAWN TO THE NOTICE Y. Shipper may increase such limitation of ying a supplemental charge if required.
200 WEST POTTER I ANCHORAGE	RD AK 99518	9075622343	Received in Good Condition Place TO EXPEDITE MOVEMENT, SHIPMI RULE UNL FAR SHIPPER OVER OT		Date O MOTOR OR OTHER CARRIER AS PER TARIFF ON
ISSUING CARRIER'S AGENT NAM	IE, CITY & PHONE		ALSO NOTIFY NAME & ADDRE		•
AGENT'S IATA CODE	ACCOUNT NO. Declared Value	Insured Amount	ACCOUNTING INFORMATION Card VI 5866 Exp 11		7
Kenai BY FIRST	\$ 0.00	\$ 0.00	COMMENTS	~	
AIRPORT OF DESTINATION Anchorage	Commodity Item No.	ght Rate/Charge	Total	Nati	re and Quantity of Goods
1 8 I M	1	\$29.18 \$2	29.18 lai	b water samples	
1 8	T CHARGE COLLECT		\$29.18		65243
\$29.18		ØTHER CI	ARGES AND DESCRIPTION DESCRIPTION		
\$0.00					
\$1.82 TOTAL OTHER CH \$0.00	ARGES DUE AGENT			HAZM	AT
	RGES DUE CARRIER	unless a higher value for part of the consignment of by air according to applic	ontains restricted articles, such pa able national governmental regula	ereof subject to an add	
ATION NUMBERS HORAGE - (907) 243-2761 AK - (907) 875-4572 RFCW - (807) 852-5300 HEL -(807) 543-3825 DHORSE - (907) 559-9222	FAIRBANKS - (907) 450-7250 GALENA -(907) 656-1875 KOTZEBUE - (907) 442-3020 NOME - (907) 443-595 ST. MARYS - (907) 438-2247 UNALAKLEET - (907) 624-3595	Paid By Shipper Printed Name and Title	's Restricted Articles Regulations.		
inted at 15:03:23 on 9/6/2016 a	ENA-FRTMGR 10.106.2	Signature			
		Consigna	Comu		

Consignee Copy

 $\sim 10^{-10}$

•

.

30.

	المالية المحافظ معادية والمحافظ والمحافظ المحافظ المحافظ المحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ ا
	Alert Expeditors Inc. #368828
	Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502
	Date 97.16 From Fugzo
	0 565
• • • · ·	Collect Prepay Account Account Account
<u>*</u>	Job # PO#
ж.	1 ration @ 8 165 RAVN
	7132222 1165243 -
	Shipped Signature
	Received By: Received By: Received By: ALUL OSO

e-SAMPLE RECEIPT FORM

	1	L1652	.43		1 1 6 5 2 4 3	
Review Criteria	Y/N (yes/	'no)	Exc	ceptions Note	d below	
Were Custody Seals intact? Note # 8 COC accompanied			exemption perr	mitted if sampler 1-F, 1-B	hand carries/delivers.	
		collected <	8hrs ago or chlling no	ot required (i.e., v	vaste, oil)	
	Y	Cooler ID	: 1	@ 4.	3 °C Therm ID:	D7
		Cooler ID	:	@	°C Therm ID:	
Temperature blank compliant* (i.e., 0-6 °C a	after CF)?	Cooler ID	:	@	°C Therm ID:	
		Cooler ID	:	@	°C Therm ID:	
		Cooler ID	:	@	°C Therm ID:	
*If >6°C, were samples collected <8 hor	ırs ago?					
If <0°C, were sample containers	ice free?					
If samples received <u>without</u> a temperature blank, the "cooler temperal be documented in lieu of the temperature blank & " COOLER TEMP " wi noted to the right. In cases where neither a temp blank nor cooler tem obtained, note "ambient" or "chilled".	ll be					
Note: Identify containers received at non-compliant temperature . Us FS-0029 if more space is needed.	e form					
Were samples received within he	old time?	Note: Refer	<u>to form F-083 "Sam</u>	ple Guide" for ho	ld times.	
Do samples match COC** (i.e.,sample IDs,dates/times co	ollected)? Y					
**Note: If times differ <1hr, record details & login	per COC.					
Were analyses requested unam	biguous? Y					
		. [***Exemption	permitted for me	tals (e.g,200.8/6020A).	
Were proper containers (type/mass/volume/preservative*	**)used? Y		<u> </u>			
IF APPLICABLE						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples? Y					
Were all VOA vials free of headspace (i.e., bubbles	≤ 6mm)? Y					
Were all soil VOAs field extracted with Me	OH+BFB?					
Note to Client: Any "no" answer above indicate:	s non-compliand	e with stand	lard procedures and	may impact data	quality.	
Addit	ional notes (if applicat	ole):			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	Preservative	<u>Container</u> Condition
1165243001-A	HCL to $pH < 2$	ОК			
1165243001-B	HCL to pH < 2	ОК			
1165243001-C	HCL to pH < 2	ОК			
1165243001-D	HNO3 to $pH < 2$	ОК			
1165243001-E	No Preservative Required	ОК			
1165243002-A	HCL to pH < 2	ОК			
1165243002-B	HCL to pH < 2	ОК			
1165243002-C	HCL to $pH < 2$	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

APPENDIX C INVESTIGATION-DERIVED WASTE DISPOSAL MANIFESTS

Q
Ο
Ē
S
υ
ų,
О
z
2
7
-
S

0	CHAIN OF CUSTODY											
P	Project Name:	Alaska LNG Site Investigation		Client:	Alas	Alaska LNG LLC		Droioct Er				
Ĕ	Project Number:	04.10160001		Project Location:	APT-1 Developmen	APT-1 Development Water located on Sirrus and Hinerman	us and Hinerman	Sheet Cilgineer.	9///ee/.	-		
N N		Sample Identification	Depth	Sample Container		USDA Remitated	Test Type	1 9		-		
	Description of contents	Sample No.)	(Size/Material)	Sample Type	Yes or No*	ABCD	E E		Remarks		
-	Fugro APT-1 Development Water from Well	r from Well APT-1	0-140ft	Bulk Water approximately 6500 gallons	Water	Ŷ				Water		
2				6456								
<i>с</i> о												
4			1.									
2												
9												
~												
Ø												
6												
10												
7												
12												
13										1		
14												
15												
	NOTES: NRC will vaccum water with vac truck 6900 gallon tank located at	truck 6900 gallon tank located at the Peterkin	Quarry concrete pad	the Peterkin Quarry concrete pad nearest Hinerman Road	aad		-	-				
	Print Name	Ketinquished Dy Signature Phone Mo	Date	Time		8	Received By		i i i	19	Type -	
	her R	28	6	10:30	TUR Name	- P	Signature	12 A	Phone No.	A B		
		-				6				U		
										0		
										ш		
										LL		

*** IN CASE OF	EMERGENCY	CALL	1-800-899-4672 ***
----------------	-----------	------	--------------------

NON-HAZARDOUS WASTE MANIFEST

107308 (LW)

	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA I	CA12-T		Manifest Document N	107308A	2.	Page 1
	FUGRO'CONSULTANTS'LLC 6100 HILLCROFT AVE HOUSTON, TX 77081		FUGRO CONSULTANT PETERKIN QUARRY NIKISKI, AK 99635	IS LLC			R	
	4. Generator's Phone ()	6.	US EPA ID Number		A. State Tran	- Andrew Aller	1550	
	7. Transporter 2 Company Name		US EPA ID Number		B. Transporte C. State Tran			////·····
	7. Transporter 2 Company Name	8.	US EPA ID Number		D. Transporte			
	9. Designated Facility Name and Site Address	1(). US EPA ID Number		E. State Facil	ity's ID		
	2020 VIKING DRIVE ANCHORAGE, AK 99501	1	AKR000004184		F. Facility's P	hon (907) 258-15	58	
	11. WASTE DESCRIPTION			Co No.	ntainers Type	13. Total Quantity	, L ,	14. Unit ₩t./Vo
	a. Material Not Regulated by DC	эт 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	s Zhan Vilk. Level a de k	. y 44.		6456	P	P
GUN		enstrine altri	Clurch Front 2	27.2		e k, i	C C	
GUNURAFOR	C.						ĺ	
0 R	а.							
	G. Additional Descriptions for Materials Listed Above				H Handling C	odes for Wastes Listed A	hove	
) EA0301 CONTAMINATED WA			D5	3 53	odes for Wastes Listed A	Dove	
				l				
-								
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	certify that the at and are in proper					ulation	าร
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	o certify that the air and are in proper of tion	condition for transportation	and are in a	ding to the		ulation	ns.
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	o certify that the air and are in proper of tion	condition for transportation	and are in a	ding to the			
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	o certify that the air and are in proper of tion	condition for transportation	and are in a	ding to the	e applicable reg	E Month	Date Day Ye
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name	o certify that the ab and are in proper	promotition for transportation	and are in a	ding to the	e applicable reg	Month	Date Day Ye
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name R. Transporter 1 Acknowledgement of Receipt of M Printed/Pyped Name TOTAL Content of the content of t	and are in proper of the share	promotition for transportation	and are in a ulations.	ding to the	e applicable reg	Month Wonth Wonth	Date Day Ye Day Ye Day Ye
Ř – A N S P O	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name	and are in proper of the share	ipment are fully and accurately described a not subject to federal hazardous waste reg	and are in a ulations.	ding to the	e applicable reg	Month PIZ Month C	Date Day Ye Day Te Day Ye Day Ye Day Te
RANSPORTER FA	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name R. Transporter 1 Acknowledgement of Receipt of M Printed/Pyped Name To Acknowledgement of Receipt of M	and are in proper of the share	ipment are fully and accurately described a not subject to federal hazardous waste reg	and are in a ulations.	ding to the	e applicable reg	Month PIZ Month C	Date Day Ye Day Ye Day Ye Day Ye Day Ye
TRANSPORTER FACILI	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	accertify that the all and are in proper of tion	ipment are fully and accurately described a not subject to federal hazardous waste reg	and are in a ulations.	ding to the	e applicable reg	Month Month Month Month	Date Day Ye Day Ye Day Ye Day Ye Life

~
Ω
0
Ē
S
C
ш
ō
~
Z
A.
T
õ
\sim

Ĩ.	1		1. 3
	ñ		
	疑		
Viene	12		
Viener	.0		
T Statist	狔	NA.	199
	T		

Proj	Project Name:	Alaska LNG Site Investigation		Client:	Ala	Alaska LNG LLC			<u> </u>	Project Engineer:	neer:			
Proj	Project Number:	04.10160001		Project Location:	APT-1 Developmer	APT-1 Development Water located on Sirrus and Hineman	ns and	Hinems	1000	Sheet	-	oť	-	
Q V		ion	Depth	Sample Container		USDA Regulated		Test	Test Type					
į	Description of contents	Sample No.	()	(Size/Material)	Sample Type	Yes or No*	<	C B		н			Remarks	
~	Fugro APT-1 Development Water from Well	APT-1	0-140ft	Bulk Water approximately 1046	Water	No							Water	
2				0			+							
e														
4							+							
5	× ,						+							
9					(*) *									
~									-					
œ														
o														
10							1							
11														
12														
13							+							
14														
15					×			-						
	NOTES: NRC will vaccum water with vac truck 1200 gallon tank located at the NRC facility on the Kenai Spur	0 gallon tank located at the NRC fac	ility on the Kenai Spu	5			-	-	~	-				
		Relinquished By				R.	Received Ru	Bu					Test Two	be 18 B
	Print Name Signature	Phone No.	Date	Time	Print Name	ne	Signature	ure		Pho	Phone No.	A		
	K. Madur K. K.	28165	A19/20/1	#	M-Will.	M-Willi amis nichad Willer	Nad	B	ere.	2				
	8		æ	13.10						`		U		
				s ip								<u> </u>		
												ш		
												u		

107195 (LVA

*** IN CASE OF EMERGENCY CALL 1-800-899-4672 *** NON-HAZARDOUS WASTE MANIFEST

	WASTE MANIFEST	1. Generator's US EF	ê Ri P		Manifest Document No.	107195A	2. Page 1 of
	FUGROVCONSULYANTSPEC 8100 HILLCROFT AVE HOUSTON, TX 77081		FUGRO CONSULTAN PETERKIN QUARRY NIKISKI, AK 99635	ITS LLC			
	4. Generator's Phone ()			- 19	5 Pr		
	5. Transporter 1 Company Name		6. US EPA ID Number		A. State Trans		
					B. Transporter		
	7. Transporter 2 Company Name		8. US EPA ID Number		C. State Trans		
	0. Designated Facility Manageral Olive Address		10. US EPA ID Number		D. Transporter		
	9. Designated Facility Name and Site Address NRC ALASKA LLC 44085 KENAI SPUR HIGHMAY KENAI, AK 99611		10. US EPA ID Number		E. State Facilit F. Facility's Ph	on(907) 395-4800	
	11. WASTE DESCRIPTION			Cc	Intainers	13.	14.
ſ	HW]			No.	Туре	13. Total Quantity	Unit Wt./Vo
	a. Material Not Regulated by DC	т		1	T	1,046	G
G E N	b.						
ERAT	С.						
O F	d.					· · · · ·	
	G. Additional Descriptions for Materials Listed Above				H. Handling Co	des for Wastes Listed Abo	ove
	15 Special Handling Instructions and Additional Info	rmation					
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	and are in prop	e above-named materials are er condition for transportatio	e proper on accoi	y classified ding to the	d, d escri bed, applicable regu	lations
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	e certify that the and are in prop tion	er condition for transportatio		rding to the	d, d escri bed, applicable regu	lations
	Shipper's Certification: This is to packaged, marked and labeled,	e certify that the and are in prop tion	er condition for transportatio	d and are in a	rding to the	d, d escri bed, applicable regu	lations
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	e certify that the and are in prop tion	er condition for transportatio	d and are in a	rding to the	d, d escri bed, applicable regu	Date
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	is certify that the and are in prop tion	er condition for transportatio	d and are in a	rding to the	applicable regu	Date onth Day Ye
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	is certify that the and are in prop tion	er condition for transportation	d and are in a	rding to the	applicable regu	Date Date Day Ye Date
Line A Non	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	is certify that the and are in prop tion	er condition for transportation	d and are in a	rding to the	applicable regu	Date
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	a certify that the and are in prop tion	er condition for transportations is shipment are fully and accurately describe are not subject to federal hazardous waster in Signature Back	d and are in a	rding to the	applicable regu	Date Date Date
à ŀ	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	a certify that the and are in prop tion	er condition for transportations is shipment are fully and accurately describe are not subject to federal hazardous waster in Signature Back	d and are in a	rding to the	applicable regu	Date onth Day Ye Date onth Day Ye
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat 16. GENERATOR'S CERTIFICATION: I hereby certi- in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M	a certify that the and are in prop tion	er condition for transportations is shipment are fully and accurately describe are not subject to federal hazardous waster in Signature Signature	d and are in a	rding to the	applicable regu	Date Date Date Date Date Date
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat 16. GENERATOR'S CERTIFICATION: I hereby certi- in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	acertify that the and are in prop tion	er condition for transportation	d and are in egulations.	rding to the	applicable regu	Date Date Date Date Date Date
	Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat 16. GENERATOR'S CERTIFICATION: I hereby certi- in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space	acertify that the and are in prop tion	er condition for transportation	d and are in egulations.	rding to the	applicable regu	Date Date Date Date Date Date Date Date Date Date

Project Name:	Alask	Alaska LNG Site Investigation		Client:	Ala	Alaska LNG LLC		Project	Project Engineer:		
Project Number:		04.10160001		Project Location:	APT-2 Developmen	APT-2 Development Water located on Sirrus and Hinerman	irrus and Hinem		-	-	
No.	Sample Identification		Depth	Sample Container	Sample Type	USDA Regulated	Ter	e e		Remarks	
1 Fugro APT-1 D	Lescription of contents Fugro APT-1 Development Water from Well	Sample No. APT-2	0-140ft	Bulk Weler Buroximately 6518			0 0 8 4	ш Ш О		Water	
				galions							
2				64 =							
e											
4							-				
5											
9											
2											
80											
6											
10											
+											
12											
13											
14											
15											
NOTES: NRC will vacci	NOTES: NRC will vaccum water with vac truck from 6900 gallon lank located at the Peterkin Quarry concrete pad nearest Hinerman Road	jalion tank located at the Pete	srkin Quarry concrete	a pad nearest Hinerm:	an Road						
	Relit	Relinquished By		日本の日本の日本の	and the second second second		Received By			T	Test Type
Print Name	Signature	Phone No.		Time	Print Name	(Signature	Π	Phone No.		
2 MOCL		28/628/64	£3/6 1	13:30	Iary vees	es fig	11 020		1 yrecs?	<u></u>	
										0 0	
										ш Ш	
										Ŀ	

*** IN CASE OF EMERGENCY CALL 1-800-899-4672 ***

107308 (ILW/)

NON-HAZARDOUS WASTE MANIFEST

-	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EP	EMPT			Manifest Document No	1073080	2. Pag of	e1,
	Benerators Name and Mailing Address C 8100 HILLCROFT AVE HOUSTON, 1X,77051		FUGI PETE NIKIS	RO CONSULTAN ERKIN QUARRY EKI, AK 99635	ITS LLC	2			
	4. Generator's Phone () 5. Transporter 1 Company Name NTCC ALACINA LLC		6. AKH	IS EPA ID Number			sporter's JD	1559	
						B. Transporte			
	7. Transporter 2 Company Name		8. L	IS EPA ID Number		C. State Trans	-		
	9. Designated Facility Name and Site Address		10. L	IS EPA ID Number		E. State Facili			
	2020 VIKING DRIVE ANCHORAGE, AK 99501		AKR	000004184		F. Facility's Pl	10n(907) 258-155	ið	
Г	11. WASTE DESCRIPTION				Co No.	ontainers Type	13. Total Quantity		14. Uni Wt./V
F	a. Material Not Regulated by DC	Τζ			e d'internationale	Π	C411		1
GUNERAT	b.				ĩ.				
E R A	C.		0.0000 00 W						
T O R	d.								
4	G. Additional Descriptions for Materials Listed Above	3				H. Handling Co	Des for Wastes Listed At	bove	
	15. Special Handling Instructions and Additional Info Shipper's Certification This is to packaged, marked and labeled.	certify that the						ulations	
		o certify that the and are in prope tion	er condition	e for transportatio	n acco	rding to the		ulations	
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de	o certify that the and are in prope tion	er condition is shipment are fu are not subject to	tor transportation	n acco	rding to the	e applicable reg	Date	
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal	o certify that the and are in prope tion	er condition	tor transportation	n acco	rding to the	e applicable reg		
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby certi in proper condition for transport. The materials de	and are in propertion	er condition is shipment are fu are not subject to	tor transportatio	I acco	rding to the all respects	e applicable reg	Date Month Day	
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name	and are in propertion	er condition is shipment are fu are not subject to	In for transportation	I acco	rding to the all respects	e applicable reg	Date Month Day	/4 Y
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M	o certify that the and are in prope- tion ify that the contents of this escribed on this manifest laterials	er condition is shipment are fu are not subject to Signa	In for Inansportation	I acco	rding to the all respects	e applicable reg	Date Month Day Date Month Day Z Date Date	/4 Y
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportel 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name I OMM Wears	o certify that the and are in prope- tion ify that the contents of this escribed on this manifest laterials	er condition is shipment are fu are not subject to Signe	In for Inansportation	I acco	rding to the all respects	e applicable reg	Date Wonth Day Date Month Day	Ye Ye
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M	o certify that the and are in prope- tion ify that the contents of this escribed on this manifest laterials	er condition is shipment are fu are not subject to Signa	In for Inansportation	I acco	rding to the all respects	e applicable reg	Date Month Day Date Month Day Z Date Date	Y K
	Shipper's Certification This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	 certify that the and are in properties ition ity that the contents of this scribed on this manifest and the scribed on this manifest and the scribed on this manifest and the scribed on the scr	er condition is shipment are fu are not subject to Signa Signa	tor transportation	I accor	rding to the all respects	e applicable reg	Date Month Day Date Month Day Z Date Date	Y Y Y

>
<u> </u>
\sim
0
<u> </u>
5.7
S
-
_
0
U
<u> </u>
\mathbf{a}
0
7
_
-
•
-
-
O

-Jug Ro

jact i	Project Name:	Alaska LNG Site Investigation		Client	Ala	Alaska LNG LLC			đ	Project Engineer:	neer:		
ect	Project Number:	04.10160001		Project Location:	APT-2 Developmen	APT-2 Development Water located on Sirrus and Hinermen	us and	Hinerm		Sheet	-	Ē	
C N	Sample Identification		Depth	Sample Container	1	USDA Regulated		Test	Test Type	T		-	
	Description of contents	Sample No.	((Size/Material)	Sample Lype	Yes or No*	A	В		Ш		Kemarks	Ks
	Fugro APT-1 Development Water from Well	APT-2	0-140ft	Bulk Water approximately 800 gallons	Water	°Z						Water	<u> </u>
								-					
										-			
										-			
1													
								-					
0	NOTES: NRC will vaccum water with vac truck from 1200 gallon tank located at NRC facility pending results	00 gallon tank located at NRC fac	ality pending results					-		1			
32		Relinquished By		and the second second		Ω.	Received By	By	and the second		A STATE OF		Test Type
	Signature	Phone No.	Date	Time	Print Name	-	Signature	an		1ª	Phone No.	A	
	R. Machan K.	281658-984 9	9/23/16	13:00	- Se wess		I cre k	2		707 3	907 3521-5215		
	-		-									0	
												0	
												ш	

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16

*** IN CASE OF EMERGENCY CALL 1-800-899-4672 ***

NON-HAZARDOUS WASTE MANIFEST

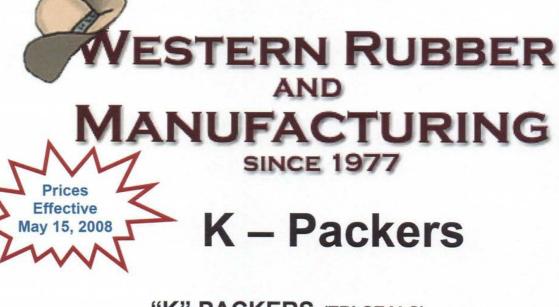
10719:

NON-HAZARDOUS	 Generator's US EPA ID N 	0		Manifest		2. Page 1
WASTE MANIFEST	1 Generator's US EPA ID N EXEMP	21		Document No.	07195B	of
FUGRO CONSULTANTSTLC 6100 HILLCROFT AVE HCUSTON, TX 77051		FUGRO CONSULT PETERKIN QUARF NIKISKI, AK 99635	3 Y			
4. Generator's Phone ()						- The last sector of a paper and a conce
5. Transporter 1 Company Name	6.	US EPA ID Number		A. Slate Transpr	CONTRACTOR AND ADDRESS OF THE	
* Tanana da Carrana Maria		00 00 10 10 11		B. Transporter 1		
7 Transporter 2 Company Name	8.	US EPA ID Number		C. State Transpe		
				D. Transporter 2		
9. Designated Facility Name and Site Address NRC ALASKA LLC	10	US EPA ID Number		E State Facility's	: 1()	
44066 KENAI SPUR HIGHWA' KENAI, AK 99611		AKR000203984		F Facility's Phor	(987) 395-4600	
11. WASTE DESCRIPTION	1999 - The Control of		Ce	ntainers	13	14.
MH			No	Туро	Total Quantity	Uni WL/V
* Material Not Regulated by	DOI			1 11	R (ю с
C .	·····					
d						
) EA0301 CONTAMINATED V	3 Ch 1 643 (64)		EQ	(8W		
			DS	() U		
15. Special Handling Instructions and Additional Shipper's Cartification: This is packaged, marked and labele of the Department of Transport 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The material	Information to certify that the abor is, and are in proper co fation	ndition for transporta	are propert	y classified, ding to the a	spiicable regul	
15. Special Handling Instructions and Additional Shipper's Cartification: This is packaged, marked and labele of the Department of Transport	Information to certify that the abor is, and are in proper co fation	ndition for transporta	are propert	y classified, ding to the a	spiicable regul	Date Date Daty Y
 Special Handling Instructions and Additional Shipper's Certification: This is packaged, marked and labele of the Department of Transport of the Department of Transport 16. GENERATOR'S CERTIFICATION: Thereby in proper condition for transport the material 	Information to certify that the aboved, and are in proper contraction tation	ndition for transporta	are propert	y classified, ding to the a	RE	Date Date Daty Y
 Special Handling Instructions and Additional Shipper's Certification: This is packaged, marked and labels of the Department of Transport GENERATOR'S CERTIFICATION: Thereby in proper condition for transport. The material Printed/Typed Name Transporter 1 Acknowledgement of Boceipt of Printed/Typed Name 	Information 10 certify that the above sd, and are in proper co tation certify that the contents of this shipm is descolled on this manifest are not af Materials	ndition for transporta	are propert	y classified, ding to the a	RE	Date Nh Day Y Date
 Special Handling Instructions and Additional Shipper's Certification: This is packaged, marked and labels of the Department of Transport GENERATOR'S CERTIFICATION: Thereby in proper condition for transport. The material Printed/Typed Name Transporter 1 Acknowledgement of Boccipt of 	Information 10 certify that the above sd, and are in proper co tation certify that the contents of this shipm is descolled on this manifest are not af Materials	ndition for transporta	are propert	y classified, ding to the a	RE	Date Nh Day Y Date
 Special Handling Instructions and Additional Shipper's Certification: This is packaged, marked and labels of the Department of Transport GENERATOR'S CERTIFICATION: Thereby in proper condition for transport. The material Printed/Typed Name Transporter 1 Acknowledgement of Boceipt of Printed/Typed Name 	Information 10 certify that the above sd, and are in proper co tation certify that the contents of this shipm is descolled on this manifest are not af Materials	ndition for transporta	are propert	y classified, ding to the a	RE	Date Date Date Date Date Date
15. Special Handling Instructions and Additional Shipper's Certification: This is packaged, marked and labele of the Department of Transpor 16. GENERATOR'S CERTIFICATION: Thereby in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Boceipt of Printed/Typed Name	Information 10 certify that the above sd, and are in proper co tation certify that the contents of this shipm is descolled on this manifest are not af Materials	ndition for transporta	are propert	y classified, ding to the a	RE Mor Mor	Date Date Date Date Date Date
15. Special Handling Instructions and Additional Shippler's Certification: This is packaged, marked and labele of the Department of Transport 16. GENERATOR'S CERTIFICATION: Thereby in proper condition for transport. The material Printed/Typed Name 18. Transporter 1 Acknowledgement of Boceint of Printed/Typed Name	Information to certify that the above sd, and are in proper cont attention certify that the contents of this shipm is descolled on this manifest are not at Materials.	ndition for transporta	ne propeñ ilion accor ite regulators	y classified, ding to the a	RE Mor Mor	Date Date Date Date Date Date
 15. Special Handling Instructions and Additional Shippler's Certification: This is packaged, marked and labele of the Department of Transport 16. GENERATOR'S CERTIFICATION: Thereby in proper condition for transport. The material Printed Typed Name 17. Transporter 1 Acknowledgement of Bocelint of Printed Typed Name 18. Transporter 2 Acknowledgement of Bocelint of Printed Typed Name 19. Discrepancy Indication Space 	Information to certify that the above sd, and are in proper cont attention certify that the contents of this shipm is descolled on this manifest are not at Materials.	ndition for transporta	nne propeñ itian accor nbed and are in a te regulations	y classified, ding to the a	RE Mar Mar	Date ath Day Y Date th Day Ye Date th Day Ye Date th Day Ye

CHAIN OF CUSTODY

Project Name:	Alast	Alaska LNG Site Investigation		Client:	AI	Alaska LNG LLC		Project Engineer;	eer:		
Project Number:		04.10160001		Project Location:	APT-3 Developme	APT-3 Development Water located on Sirrus and Hinerman	rus and Hinerman	Sheet	1 0	-	
	Sample Identification		Depth	Sample Container		USDA Regulated	Test Tvpe	lä			
	Description of contents	Sample No.	()	(Size/Material)	Sample Type	Yes or No*	ABC	D E		Remarks	
1 Fugro APT-3 Develo	Fugro APT-3 Development Water from Well	APT-3	0- 1 1	Bulk Water approximately 1800	Water	oN				Water	
2											
m											
4											
ß											
ω											
7											
ω											
Ø											
10											
11											
12											
13											
14											
15											
NOTES: NRC will vaccum w	NOTES: NRC will vaccum water with vac truck from 6900 gallon bulk storage tank located on Hinerman and Sirrus in the Peterkin Quarry	allon bulk storage tank locate	d on Hinerman and	Sirrus in the Peterkin	i Quarry						
	Reilr	Relinquished By				ũ	Received Rv			T and the	4
Print Name	Signature	Phone No.	Date	Time	Print Name		Signature	Phon	Phone No.		ad
RANDY LU-KASIK	.they are	902-306-3997 9/15/2016	9/15/201		Thomas Paperson	a Lusha Re	K.	378-534 U	344		
~)									0	
										٥	
										ш	

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16


ш

	NON-HAZARDOUS	(12 pitch) typewriter) 1. Generator's USERA	2 Mb9 T		Manifest	107173A		2. Page	1 -
	WASTE MANIFEST FOGROFCONSULTANTSTELC 8100 HILLCROFT AVE HOUSTON, TX 77081		FUGRO CONSULTA PETERKIN QUARRY NIKISKI, AK 99835		ļ			of	
	4. Generator's Phone ()								
	15. Transporter 1 Company Name	6.	AK US EPA ID Number			porter's IP	155	Ş	
	7. Transporter 2 Company Name		US EPA ID Number		B. Transporter C. State Trans				
					D. Transporter				
	9 Designated Facility Name and Site Address	10). US EPA ID Number		E. State Facilit	y's ID			
	4 006 KENAI SPUR HIGHW AY KEN AI , AK 99611		AKR000203984		F. Facility's Ph	on(907) 395-46	300		
	11. WASTE DESCRIPTION			Cc No.	ntainers	13. Total Quantity			14. Unit /t./Vo
P	a. Material Not Regulated by DC	T		No.	Туре	Quantity			1./ VO
				1	and a second	1678			0
111 200	b.								
	C.	1 E							
41	d.								
	G. Additional Descriptions for Materials Listed Above EA0301 CONTAMINATED WA		CHARGE	05	H. Handling Co 217	des for Wastes Listed	Above		
	EA0301 CONTAMINATED WA	TERS APT-3 DISC	CHARGE	D5		des for Wastes Listed	Above		
		mation corectify that the air and are in proper of tion	condition for transportati	e proper on accor	217 ly classifier ding to the	o, d escr ibed,			
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat	mation corectify that the air and are in proper of tion	condition for transportati	e proper on accor	217 ly classifier ding to the	o, d escr ibed,		Date	Ye
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name Wang Luck Sci K.	mation certify that the alt and are in proper of tion	ipment are fully and accurately describ- not subject to federal hazardous waste	e proper on accor	217 y classifier ding to the all respects	o, d escr ibed,	gulati	Date Day 15	Ye
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials do Printed/Typed Name Wath A Sirk. 17. Transporter 1 Acknowledgement of Receipt of M	mation certify that the alt and are in proper of tion	ipment are fully and accurately describ not subject to federal hazardous waste	e properton accord	217 y classifier ding to the all respects	o, d escr ibed,	gulatio	Date Day 15 Date	
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportal 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name Wang Luck Sci K.	mation certify that the alt and are in proper of tion	ipment are fully and accurately describ- not subject to federal hazardous waste	e properton accord	217 y classifier ding to the all respects	o, d escr ibed,	gulati	Date Day 15	
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name Marked Marked K. 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name Marked Marked 18. Transporter 2 Acknowledgement of Receipt of M	rmation certify that the ais and are in proper of ity that the contents of this shi secribed on this manifest are laterials	ipment are fully and accurately describ- not subject to federal hazardous waste	e properton accord	217 y classifier ding to the all respects	o, d escr ibed,	Month	Date Day 15 Date Day Date	Ye
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportat 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials do Printed/Typed Name Kamubar Kasik. 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name Thomas Rashasa	rmation certify that the ais and are in proper of ity that the contents of this shi secribed on this manifest are laterials	ipment are fully and accurately describ not subject to federal hazardous waste	e properton accord	217 y classifier ding to the all respects	o, d escr ibed,	gulatio	Date Day 15 Date Day	Ye
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name Marked Marked K. 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name Marked Marked 18. Transporter 2 Acknowledgement of Receipt of M	rmation certify that the ais and are in proper of ity that the contents of this shi secribed on this manifest are laterials	ipment are fully and accurately describ- not subject to federal hazardous waste	e properton accord	217 y classifier ding to the all respects	o, d escr ibed,	Month	Date Day 15 Date Day Date	Ye
	15. Special Handling Instructions and Additional Info Shipper's Certification: This is to packaged, marked and labeled, of the Department of Transportation 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials de Printed/Typed Name Way Labeled, Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name Marked 17. Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name Marked 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name Marked 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	mation Certify that the att and are in proper of tion If that the contents of this shi ascribed on this manifest are in laterials laterials	ipment are fully and accurately describing ipment are fully and accurately describing int subject to federal hazardous waste	e propert on accord ad and are in regulations.	217 y classifier ding to the all respects	o, d escr ibed,	Month	Date Day 15 Date Day Date	Ye Ye Ye

APPENDIX D MANUFACTURER'S SPECIFICATION (CUT) SHEETS

"K" PACKERS (TRI-SEALS)

*(FOR PVC PIPE-

Not Included)

WELD-ON

Available in the three (3) types, COUPLING (Right by Right/Right
by Left) BLANK (for aluing to PVC pipe) WELD ON

- Designed to seal in Schedule 40 pipe unless stated otherwise.
- Can be Furnished in STAINLESS STEEL
- Provides a "sand tight" seal between screen and casing
- Used for many applications in WATER WELL, CONSTRUCTION, AND ENVIRONMENTAL industry.
- Constructed from neoprene rubber being vulcanized and bonded under heat and pressure to coupling or pipe
- Available in two (2) rubber hardnesses
 70 durometer—STANDARD
 50 durometer—SOFT
- CUSTOM K-PACKERS AVAILABLE to 24[°], please call with your requirements.

			RIGHT BY RIGHT		RIGHT BY LEF	Т	BLANK	A DECKS	WELD ON	1.
PIPE	SIZE	NOTES	PART NUMBER	PRICE / WT.	PART NUMBER	PRICE / WT.	PART NUMBER	PRICE /	PART NUMBER	PRICE / WT.
4"	6"								KPWO46	/ 8.05
10"	12*								KPW01012	/ 34.10

Distributed By:

PQProducts, Inc. 923 E Farwell Road, Spokane, WA 99208 509-624-6820 Paul 509-939-1612 Perry 509-991-2993 www.pqproducts.com paul@pqproducts.com

Alloy Machine Works, Inc. - Well Screens 1-800-577-5068

Confidential LNG Facilities Aquifer Pump Test Well and Groundwater Observation Well Installation Report USAL-FG-GRZZZ-00-002016-002 Rev.0 2-Dec-16

WELL SCREEN SUBMITTAL DATA

3/16/2016

ATTN: PROJECT: 4" PS x 6" Telescope PrePack

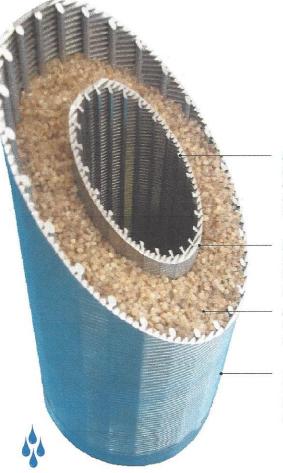
PQ Products

838

CUSTOMER:

	4	" PSX	****	6" Tel
Material	304 SS		304SS	
Nominal Size	4 PS	102 mm	6 Tel	152 mm
Estimated Well Depth	100 ft	30 meters	100 ft	30 meters
Estimated Feet of Screen	10 ft	3 meters	10 ft	3 meters
Slot Size	0.020 in	0.51 mm	0.020 in	0.51 mm
Outside Diameter Approx.	4.5 in	114 mm	5.625 in	143 mm
Inside Diameter Rod Base Screen	4 in	102 mm	5 in	127 mm
Inside Diameter at Fittings Approx.	4 in	102 mm	5 in	127 mm
Weight Per Foot Approx.	3.78 lbs.	1.7 kg	4.73 lbs.	2.1 kg
Wire Width	0.060 in	1.5 mm	0.060 in	1.5 mm
Wire Height	0.100 in	2.5 mm	0.100 in	2.5 mm
Collapse Strength Combined*	1855.49 PSI	130.441 kg/sq.cm	1855.5 PSI	130.442 kg/sq.cm
Open Area	25 %	25 %	25 %	25 %
Intake Area	42.97 sq.in./ft.	910 sq.cm./meter	54.16 sq.in./ft.	1147 sq.cm./meter
Transmitting Capacity @ 0.1 ft/sec	13.32 GPM/ft.	2.76 lps/meter	16.79 GPM/ft.	3.47 lps/meter
Support Rod Diameter	0.125 in	3.18 mm	0.125 in	3.18 mm
Number of Support Rods	26	26	32	32
Cross Sectional Support Rod Area	0.3172 sq.in	2.05 sq.cm.	0.3904 sq.in	2.52 sq.cm.
Design Yield Strength	30,000 PSI	2109 kg/sq.cm	30,000 PSI	2109 kg/sq.cm
Calculated Tensile Strength*	6,661 lbs.	3024.094 kg	11,712 lbs.	5317.248 kg
Maximum Recommended Hanging Weight*	3,330 lbs.	1511.820 kg	4,099 lbs.	1860.946 kg
Critical Compression Load**	9,599 lbs.	4358.159 kg	12,111 lbs.	5498.394 kg

Distributed By: *PQ* Products, Inc. Contact Paul or Perry 509-624-6820 Fax 509-467-4515 www.pqproducts.com paul@pqproducts.com perry@pqproducts.com



ROD-BASED PRE-PACK

Rod-based, wire-wrapped sand control screen

The rod-based Pre-Pack, wire-wrapped, all-welded screen eliminates the need to underream and gravel pack a well. It consists of two concentric V-shaped wire screens and a 0.25-in. thick (or thicker if required) integral gravel pack. The gauge of the inner and outer jackets is determined by the size and type of gravel pack used. The size and type of gravel

pack used is dependent on the formation sands that are to be controlled. The aggregate gravel pack is non-resin coated. The dual screen provides built-in sand control when gravel packing is not feasible.

Rib wire

the unique structure of the inner rib wire combined with the swaging process of the design provides tensile and collapse strength The rib wire supports the screen wrap wire.

Inner screen wrap wire

V-shaped wire gauge opening size is determined by the selected aggregate in the screen annulus (alloy and dimensions per customer specs).

Aggregate gravel pack:

custom designed and selected to suit the pay zone formation materials of the well

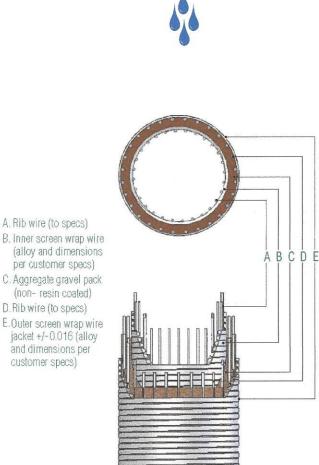
Outer screen wrap wire

V-shaped wire provides a self-cleaning action for greater flow and less chance of plugging (alloy and dimensions per customer specs).

Applications

- Built-in sand control when gravel packing is not feasible or too costly
- Shallow wells with thin pay
- Numerous workover applications
- · Cased or open hole horizontal completions.

Distributed By: PQ Products, Inc. 923 E Farwell Road, Spokane, WA 99208 ALLOY SCREEN WORKS 509-624-6820 Fax: 509-467-4515 www.pqproducts.com paul@pqproducts.com **Contact: Paul Querna, PE or Perry Querna**


A division of Alloy Machine Works, Inc.

ROD-BASED PRE-PACK

Rod-based, wire-wrapped sand control screen

Advantages

- · Economical solution when gravel packing is not feasible
- Eliminates the need to under-ream and gravel pack a well
- Choice of wrap wire and alloys as well as type and thickness of aggregate gravel pack allows for custom engineering to match specific production environments
- Due to the large array of sizes, materials and connections, our Rod-Based Pre-Pack screens provide a variety of options for multiple applications.
- Aggregate Gravel Pack can be composed of Carbolite, glass beads or other materials per application.
- Purpose built for water producing wells
- Can be supplied with 304 or 316 riser pipe.
- Options include Flush Joint, NPT, or Weld Ring Fittings.

	Ser	Gravel Pack	
Size (in.)	OD (in.)	Cylinder Area (sq in./ft)	Thickness (in.)
1.900	3.102	166.88	0.250
2.063	3.265	123.03	0.250
2.375	3.577	134.78	0.250
2.875	4.077	153.62	0.250
3.500	4.702	177.17	0,250
4.000	5.202	196.01	0,250
4.500	5.702	214,85	0.250
5.000	6.202	233.69	0.250

Distributed By: *PQ* Products, Inc. 923 E Farwell Road, Spokane, WA 99208 509-624-6820 Fax: 509-467-4515 <u>www.pqproducts.com</u> <u>Contact: Paul Querna, PE or Perry Querna</u>

18102 East Hardy Road Houston, Texas 77073 USA Phone: 281.233.0214 Toll-free: 800.577 5068 Fax: 281.233.0487 Email: info@alloyscreenworks.com www.alloyscreenworks.com

ISO 9001:2000 Registered QMS