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1.0  INTRODUCTION 

1.1 Project Description 

ExxonMobil Alaska LNG LLC (EMALL) is developing the onshore and nearshore LNG facilities in 
Nikiski, Alaska (Plate 1). Fugro Consultants Inc. (Fugro) is currently providing geotechnical site 
exploration, geohazard assessment, and earthquake engineering services for this project. Fugro 
performed Probabilistic Seismic Hazard Analyses (PSHA) to develop ground motion criteria for the 
planned facilities per the requirements of National Fire Protection Agency (NFPA 59A 2006) and 
ASCE 7-05. PSHA was conducted using a time-weighted average shear velocity in the upper 30 
meters (Vs30) of 885 ft/s (270 m/s) to develop ground motions at the ground surface in the onshore 
and nearshore locations. The PSHA ground motions estimated at the ground surface are used to 
conduct liquefaction potential evaluations for the onshore and nearshore facilities in the companion 
Seismic Engineering report (Fugro Report No. 04.10140334-13).  

In Phase 1, Fugro had performed PSHA (Fugro Report No. 04.10140094-6) using a Vs30 of 900 ft/s 
(275 m/s) to develop ground motions at  the ground surface for the onshore areas, per the 
requirements of NFPA 59A 2006 / ASCE 7-05 and NFPA 59A 2013 / ASCE 7-10. Since then, 
additional geotechnical explorations and geophysical investigation have been performed at the 
location of the onshore and nearshore facilities for Phase 2. In addition, the seismotectonic model 
used in the Phase 1 PSHA has been refined based primarily on additional geophysical data 
collected and industry data reviewed during Phase 2 of this project. Based on the review of data 
obtained from Phase 2 geophysical investigation and other available data sources, the refined site-
specific seismotectonic model has included an updated characterization of local faults within a five-
mile radius of project facilities. Therefore, this report presents updated design ground motion 
criteria and supersedes all previous ground motion evaluation reports.  

Finally, additional analyses were also performed to develop ground motion criteria per the 
requirements of NFPA 59A 2013 and ASCE 7-10. The ground motion results per the requirements 
of NFPA 59A 2006 and ASCE 7-05 are presented in the main text of the report and the results for 
NFPA 59A 2013 and ASCE 7-10 are presented in Appendices C and D, per the request of EMALL.  

1.2 Work Authorization 

The work was authorized under contract to ExxonMobil Alaska LNG LLC (EMALL), under work 
Order No. AKLNG-FUG-US-003 Rev 0, Agreement number A2275592, effective February 5, 2015. 

1.3 Scope and Organization  

Fugro conducted Probabilistic Seismic Hazard Analyses (PSHA) to estimate the severity of ground 
motions at the ground surface that may affect the future onshore and nearshore structures which 
will be developed as a part of the LNG project.  

Fugro’s scope of work for the seismic hazard analyses included the following tasks:  
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 Task 1 – Refinement of Seismotectonic Model; 

 Task 2 – Probabilistic Seismic Hazard Assessment (PSHA);  

 Task 3 – Development of Time Histories; and 

 Task 4 – Reporting. 

Section 2.0 describes the regional tectonic setting of the project area, and includes discussions of 
regional historical seismicity and seismotectonic elements. Section 3.0 provides detailed 
descriptions of the seismic source characterization parameters of the seismotectonic model, to be 
used in the seismic hazard analyses. Section 4.0 describes the methodology used for PSHA, while 
Section 5.0 presents the analysis and the PSHA results in the form of acceleration response 
spectra at the ground surface. Section 6.0 presents the development of ground acceleration time 
histories.  Section 7.0 lists the references cited in this study.  The approved scope of work for 
seismic hazard analyses also includes liquefaction potential evaluations and seismic slope stability 
evaluations. These evaluations will be presented in the forthcoming Seismic Engineering Report 
for the project (Fugro Report No. 04.10140334-13) and the Onshore Integrated Site 
Characterization and Geotechnical Engineering Report (Fugro Report No. 04.10140334-14), 
respectively. 

1.4 Limitations of this Study 

This report has been prepared solely to assist ExxonMobil Alaska LNG LLC (EMALL), and the 

engineering team members in the Pre-FEED design of the Nikiski terminal facility. The results 

herein apply to the specific locations mentioned and are not applicable to other locations. 

Seismic hazard analysis is a dynamic, rapidly evolving field of earthquake engineering. It is likely 

that the standard of practice in the project region for these services will evolve over the next few 

years. In addition, new information regarding fault extent, geometry, and activity may also become 

available. Consequently, the results presented in this study should be reviewed if new data 

become available during the design of the project. 

This report has been prepared for the exclusive use of ExxonMobil Alaska LNG LLC (EMALL), and 

its agents for the specific application to the proposed LNG terminal in Nikiski, Alaska. In our 

opinion, the findings, conclusions, professional opinions, and recommendations presented herein 

were prepared in accordance with generally accepted current seismic hazard geotechnical 

engineering practice.   

Although information contained in this report may be of some use for other purposes, it may not 

contain sufficient information for other parties or uses. If any changes are made to the project as 

described in this report, the conclusions and recommendations in this report shall not be 

considered valid unless the changes are reviewed and the conclusions and recommendations of 

this report are modified or validated in writing by Fugro. 
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1.5 Summary and Findings  

1.5.1 Probabilistic Seismic Hazard Analyses 

Probabilistic seismic hazard analyses (PSHA) were conducted to develop ground surface level 
acceleration response spectra for the planned LNG facilities of the Alaska LNG project located in 
Nikiski, Alaska. The study involved the following: 

 Developing a detailed seismotectonic model that characterizes the various sources of 
seismicity that impact the project area located in Nikiski, Alaska. This process involved 
delineating the geometry and seismicity characteristics of potential seismogenic sources 
within about 124 miles (200 kilometers) of the project area.  

 Conducting PSHA to compute acceleration response spectra in accordance with the 
requirements of National Fire Protection Agency (NFPA) 59A 2006 and ASCE 7-05 
guidelines for project facilities. According to NFPA, two levels of ground motions are 
developed for: Operational Basis Earthquake (OBE) corresponding to 475-year return 
period, and a more severe Safe Shutdown Earthquake (SSE) which is same as Maximum 
Considered Earthquake (MCE) per ASCE 7-05. According to ASCE 7-05 two levels of 
design ground motions are developed for: Maximum Considered Earthquake (MCE) and for 
Design Earthquake (DE).  

 Conducting PSHA to compute acceleration response spectra in accordance with the 
requirements of National Fire Protection Agency (NFPA) 59A 2013 and International 
Building Code (IBC, 2012) guidelines for project facilities. According to NFPA, three levels 
of ground motions are developed for: Operational Basis Earthquake (OBE) corresponding 
to 475-year return period, which is the same as the Operational Basis Earthquake (OBE) 
per NFPA 59A 2006, a more severe Safe Shutdown Earthquake (SSE) which is same as 
“Risk-adjusted” Maximum Considered Earthquake (MCER) per ASCE 7-10, and a third level 
for Aftershock Level Event (ALE), equal to ½ of SSE. According to IBC (2012) two levels of 
design ground motions are developed for: “Risk-adjusted” Maximum Considered 
Earthquake (MCER) per ASCE 7-10 and for Design Earthquake (DE). These results are 
presented in Appendix C. 

 Deaggregating the seismic hazard results to identify the key contributors to the hazard in 
each zone in terms of earthquake magnitude, distances to the seismogenic sources, and 
types of seismogenic sources.   

The primary results from the seismic hazard analyses were as follows: 

 Review of the seismotectonic setting and historical seismicity identified interplate, intraplate 
and shallow crustal fault sources in the site region. Based on the information gathered from 
available geotechnical data for project facilities (including the in-situ shear wave velocity 
measurements, Interferometric Multichannel Analysis of Surface Waves and Standard 
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Penetration Tests), PSHA was conducted at ground surface with a time-weighted average 
shear wave velocity (Vs) in the top 100 feet (approximately 30 meters) (i.e., 100 ft/integral 
from 0 to 100 ft of dz/Vs(z)) of 885 ft/s (270 m/s). The Vs30 parameter is one of the main 
parameters used by the Ground Motion Prediction Equations (GMPEs) especially the most 
recent developed GMPEs.  Tables 1.1 and 1.2 summarize the horizontal PGA values at the 
ground surface (Vs30 = 885 ft/s) for planned onshore and nearshore facility locations, 
respectively. 

 
Table 1.1: Peak Ground Acceleration Values of Horizontal Component at the Ground 

Surface (Vs30 = 885 ft/s) per NFPA 59A 2006 and ASCE 7-05 for Onshore Facilities  

NFPA 59A (2006) ASCE 7-05 

Operating Basis 

Earthquake (OBE) 

(g) 

Safe Shutdown 

Earthquake (SSE) 

(g) 

Maximum 

Considered 

Earthquake (MCE) 

(g) 

Design 

Earthquake (DE) 

(g) 

0.528 0.897 0.897 0.598 

 

Table 1.2: Peak Ground Acceleration Values of Horizontal Component at the Ground 

Surface (Vs30 = 885 ft/s) per NFPA 59A 2006 and ASCE 7-05 for Nearshore Facilities  

NFPA 59A (2006) ASCE 7-05 

Operating Basis 

Earthquake (OBE) 

(g) 

Safe Shutdown 

Earthquake (SSE) 

(g) 

Maximum 

Considered 

Earthquake (MCE) 

(g) 

Design 

Earthquake (DE) 

(g) 

0.528 0.901 0.901 0.601 

 

 The deaggregation of the hazard reveals that the majority of the hazard for short structural 
periods (i.e. PGA) is dominated by intraslab sources for both 475- and 2475-year return 
periods for both onshore and nearshore locations. At longer structural periods (i.e. 1 and 3 
seconds) contribution from the subduction interface, is also significant.  Only one local fault, 
F7 - Middle Ground Shoal Anticline and Granite Point Anticline, is seen to contribute 
significantly (up to 32%) for the longer structural periods for 2,475-year event.  

 Based on deaggregation by magnitude and distance, for both short and longer structural 
periods the seismic hazard at the project site is controlled by mainly three scenarios for 
both onshore and nearshore locations: (a) larger magnitude earthquakes, between 9 to 9.2, 
at distances between about 31 to 62 mi (50 km to 100 km) attributed to the megathrust 
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events on S2 interface (Prince William Sound), (b) intermediate to large magnitude events 
(i.e., 7.0 to 8.0) at distances between about 31 to 93 mi (50 km to 150 km) associated with 
the intermediate depth and deep intraslab subduction earthquakes, and (c) and 
intermediate to large magnitude shallow earthquakes (i.e., 7 to 7.5) at distances about 3.1 
to 6.2 mi ( 5 to 10 km) from the project site. 

 The vertical response spectra were developed by applying vertical to horizontal (V/H) 
spectral ratios to the ground surface horizontal response spectra. The estimated vertical 
peak ground acceleration values at surface for different shaking levels per NFPA 59A 2006 
and ASCE 7-05 are reported in Tables 1.3 and 1.4. The vertical response spectra at 
surface for OBE, SSE, ALE, MCER and DE in accordance with the requirements of NFPA 
59A 2013 and ASCE 7-10 are presented in Appendix C. 

 

Table 1.3 Peak Ground Acceleration Values of Vertical Component at the Ground Surface 

(Vs30 = 885 ft/s) per NFPA 59A 2006 and ASCE 7-05 for Onshore Facilities 

NFPA 59A (2006) ASCE 7-05 

Operating Basis 

Earthquake (OBE) 

(g) 

Safe Shutdown 

Earthquake (SSE) 

(g) 

Maximum 

Considered 

Earthquake (MCE) 

(g) 

Design 

Earthquake (DE) 

(g) 

0.407 0.691 0.691 0.461 

 

Table 1.4 Peak Ground Acceleration Values of Vertical Component at the Ground Surface 

(Vs30 = 885 ft/s) per NFPA 59A 2006 and ASCE 7-05 for Nearshore Facilities 

NFPA 59A (2006) ASCE 7-05 

Operating Basis 

Earthquake (OBE) 

(g) 

Safe Shutdown 

Earthquake (SSE) 

(g) 

Maximum 

Considered 

Earthquake (MCE) 

(g) 

Design 

Earthquake (DE) 

(g) 

0.407 0.694 0.694 0.463 

 

1.5.2 Development of Ground Acceleration Time Histories 

Five sets of accelerograms were selected to represent the shaking corresponding to Safe 
Shutdown Earthquake (SSE) / Maximum Considered Earthquake (MCE), and Operation Basis 
Earthquake (OBE) per the NFPA 59A 2006 guidelines. The ground motions were selected from 
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high-quality recordings with emphasis given to the overall shape of the response spectra of the 
recorded motion relative to the target spectrum, as well as the magnitude, distance, significant 
duration (D5-95) and PGA of the recorded time-histories.  The design data are applicable at ground 
surface with Vs30 of 885 ft/s. The ground motions matched to Safe Shutdown Earthquake (SSE) / 
“Risk-adjusted” Maximum Considered Earthquake (MCER) per the NFPA 59A 2013 code are 
presented in Appendix D. 
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2.0 SEISMOTECTONIC SETTING  

2.1 Introduction 

Geological, geophysical, tectonic, and seismological data and analyses from coastal and inland 

southern Alaska were used to develop a seismic source model for estimating the strong ground 

motion hazard at the proposed Nikiski LNG terminal site, located on the Kenai Peninsula in the 

Cook Inlet (referred to herein as the site, Plate 1). The study region is defined by a 124 mi (200 

km) radius around the site. The study region includes all known structures and seismic sources 

relevant to ground motion estimations at the proposed site.  

Sections 2.1 and 2.2 provide an introduction to the regional tectonic setting and historical 

seismicity of the study region. Section 2.3 provides a detailed discussion of potential seismic 

sources evaluated.  Section 3.0 then characterizes those seismic sources that were used as inputs 

to the PSHA. 

2.2 Regional Tectonic Framework, and Tectonic and Physiographic Elements 

The study region, centered in the upper Cook Inlet Basin, is located along the active convergent 

margin between the North American and Pacific plates (Plate 2). This region is characterized by 

high rates of seismicity and relatively frequent moderate to great earthquakes. The 1964 moment 

magnitude (Mw, or M) 9.2 Good Friday Earthquake was the largest recorded event in Alaska. 

Active tectonism and associated earthquake activity in the region are driven by interactions 

between four principal tectonic domains: (1) the Pacific Plate, (2) North American Plate, (3) Yakutat 

Terrane, and (4) Southern Alaska Block. The locations of these domains are shown schematically 

on Plate 2. In summary, the Yakutat Terrane is a microplate that is partially coupled to the Pacific 

Plate, although it is moving north at a slower rate and along a more westerly azimuth. The 

Southern Alaska Block is part of the western edge of the North American Plate, but is moving 

differentially with respect to the rest of the plate — it is rotating in a counterclockwise fashion. The 

Pacific Plate is subducting below the edge of the North American Plate/Southern Alaska Block as 

well as below the southwestern edge of the Yakutat Terrane. The North American Plate/Southern 

Alaska Block is being obducted, or emplaced, onto the northern edge of the Yakutat Terrane, but 

without accompanying plate subduction.   

At the longitude of the site region, motion of the Pacific Plate relative to the North American Plate is 

directed along an azimuth of approximately 349 degrees (Freymueller et al., 2013).  The rate of 

convergence is 2.0 in/yr (52 mm/yr) to 2.7 in/yr (55 mm/yr) (Perry et al., 2009; Bruhn and 

Haeussler, 2006). Plate convergence is being accommodated largely by the Aleutian megathrust 

(Plate 2). North of the Aleutian megathrust, in the interior of south-central Alaska, north-directed 

motion of the plate is accommodated primarily by dextral slip along the Denali fault (Plates 2 and 
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3), and reverse faulting along the Castle Mountain fault (Plate 3) and Foothills fold-and-thrust belt 

(not shown due to its distance from the Site).  

Deformation within the site region is intimately linked to northwest-directed motion of the 

allochthonous Yakutat microplate (Plate 2). As mentioned above, this microplate lies between the 

North America Plate to the north and the Pacific Plate to the south, and is being actively 

underthrust below the southern edge of the North American Plate at a rate of 1.7 in/yr (44 mm/yr) 

(Perry et al., 2009). The collision drives counterclockwise rotation in the interior of south-central 

Alaska (vis a vis the Southern Alaska Block, Plate 2) as well as contraction within Cook Inlet and 

lateral escape to the southwest (Haeussler et al., 2000; Haeussler, 2008). 

Based on this tectonic framework, the site region lies within the Southern Alaska Block (which is 

part of the North American Plate). In the following subsections, descriptions are provided for 

tectonic and physiographic elements within the site region. These include: (1) the Cook Inlet 

Basin—a forearc basin in the upper plate of the subduction zone, (2) the Kenai and Chugach 

Mountains—the accretionary complex above the Aleutian megathrust, (3) the Talkeetna 

Mountains, and (4) the Alaska Range-Aleutian volcanic arc (Plates 3 and 4). 

2.2.1 Cook Inlet Basin 

The Cook Inlet basin (Plate 3) is a Tertiary forearc basin (Haeussler et al., 2000) bounded to the 

west-northwest by the Alaska Range and Aleutian volcanic arc, and to the east-southeast by the 

Chugach and Kenai Mountains. The depth to the top of the subducting Pacific slab beneath Cook 

Inlet rapidly increases from 22 mi (35 km) near Anchorage to 31-38 mi (50-60 km) beneath the 

basin’s center (Page et al., 1991; Wesson et al., 2007). Four fault zones define the basin margins: 

the Border Range fault and Bruin Bay fault, both of which are inactive, and the Quaternary-active 

Castle Mountain fault and Lake Clark fault (e.g., Koehler et al., 2012a; Plate 3). 

Cook Inlet Tertiary basin fill uncomformably overlies the Mesozoic basement terranes bounding the 

inlet (Hartman et al., 1972; Haeussler et al., 2000). The Tertiary basin fill and overlying Quaternary 

deposits, known as the Kenai Group, have a combined thickness of over 20,000 ft (6100 m) 

(Hartman et al., 1972; Shellenbaum et al., 2010) (Plate 5). Formations include, from oldest to 

youngest, the West Foreland Formation, Hemlock Conglomerate, Tyonek Formation, Beluga 

Formation, and Sterling Formation (Hartman et al., 1972; Plate 6). The Pliocene and younger 

Sterling Formation and the overlying early Quaternary sediments constitute up to 10,000 ft (3000 

m) of sediment in the central and eastern Cook Inlet Basin. They are glacial and alluvial materials 

sourced from the Alaska and Chugach ranges and consist of massive sandstones, conglomeratic 

sandstones, and interbedded claystones (Hartman et al., 1974; Calderwood and Fackler, 1972). 

Cook Inlet basin sediments exhibit multiple northeast-trending folds, subparallel to the basin 

margins (Kirschner and Lyon, 1973; Fisher et al., 1987; Magoon et al., 1976; Alaska Oil and Gas 

Conservation Commission, 1994; Haeussler et al., 2000; Koehler et al., 2012a). Near the Castle 
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Mountain fault the fold axes have a more easterly trend (Plates 3 and 4), which has been 

interpreted as drag from right-lateral shear along the Castle Mountain fault (Haeussler et al., 2000). 

Folding of Cook Inlet forearc basin materials provides the structural traps for the inlet’s numerous 

oil and gas fields, and these folds have been described in the geologic literature from the early 

1960s (Kelly, 1961, 1963; Kirschner and Lyon, 1973; Boss et al., 1976). Since that time, 

understanding of the structural relationships between folds, buried faults, and earthquakes has 

grown substantially. Events such as the 1995 Kobe Mw 6.9 earthquake, sourced in a 

transpressional forearc setting, have provided valuable understanding of the seismic hazard 

potential in forearc settings above Benioff zones (Sugiyama, 1995; Wesnousky and Scholz, 1982). 

Additionally, Bucknam et al. (1992) and Johnson et al. (1996) show that events with magnitudes 

larger than 8.0 have likely occurred as a result of transpression within the Cascadia forearc basin 

overlying the subduction zone (Haeussler et al., 2000). The Alaska Quaternary Fault and Fold 

database (QFF) (Koehler et al., 2012a) identifies 19 potential Quaternary active tectonic structures 

in the Cook Inlet basin based on the correlation of magnetic and gravity lineaments with available 

oil and gas industry seismic reflection data.  

Mapped structures in Cook Inlet are described as fault-cored anticlines (Fisher and Magoon, 1978; 

Haeussler et al., 2000; Bruhn and Haeussler, 2006; Haeussler and Saltus, 2011). Steeply dipping 

master faults accommodate predominantly reverse motion, with faults extending through the 

Tertiary basin fill into the Mesozoic basement (Bruhn and Haeussler, 2006). Cross-sections 

generated from industry seismic data indicate variable directions of structural vergence: some 

faults dip to the northwest while others dip to the southeast (Bruhn and Haeussler, 2006).  

Haeussler et al. (2000) used existing public- and private-sector data to evaluate Quaternary 

activity, timing of onset, and rates of deformation of these structures. While the data permit 

deformation initiating as early as late Miocene time, most of it likely occurred in the late Pliocene 

and Quaternary, and many structures are likely still active (Haeussler et al., 2000).  For example, 

depositional patterns within the Miocene Beluga Formation suggest that Cook Inlet deformation 

may have begun post-late Miocene time (Hartman et al., 1974). In contrast, the thickness of the 

Beluga Formation is uniform across the mapped fold axes, which indicates that folding initiated 

after the strata formed (Haeussler et al., 2000). In terms of assessing the Quaternary activity on 

the Cook Inlet folds, Haeussler et al. (2000) list the following observations and/or lines of 

reasoning:  

 The Castle Mountain fault that bounds the basin is active. Assuming the anticlines are 

structurally linked with this fold, they, too, must be active; 

 Virtually all strata above the base of the Pliocene Sterling Formation show uniform 

thicknesses across the crests of folds, indicating most of the deformation is post-Pliocene; 
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 Growth wedges, such as those adjacent to the Beluga and Castle Mountain fault folds, are 

shallow, suggesting Quaternary fold growth; 

 Growth wedge margins are folded, indicating present-day deformation; 

 The seafloor above the North Cook Inlet fold axis is uplifted and folded concordantly with 

the deeper strata; 

 Diamicts at Granite Point, of possible Quaternary age, are tilted within the Granite Point 

anticline; 

 The Ivan and Lewis River channels suggest active response to the Lewis River, Ivan River, 

and Stump Lake anticlines. 

Historical seismicity patterns in the Cook Inlet region bolster the case for ongoing forearc basin 

deformation. Frequent M ≤  3.0 earthquakes with depths of 10 to 22 mi (15 to 35 km), clustered at 

12 to 18 mi (20 to 30 km) depth (Stephens et al., 1995), occur above the Benioff zone of the 

subducting Pacific slab (Page et al., 1991; Stephens et al., 1995; Ratchkovski et al., 1998). An 

examination of focal mechanisms for 21 of these earthquakes by Ratchkovski et al. (1998) 

determined that two-thirds of these events were consistent with thrust motion on northeast-striking 

nodal planes, and the remaining one-third of events were consistent with strike-slip motion on 

northeast- and northwest-striking nodal planes. Haeussler et al. (2000) do not correlate any M ≤  

3.0 earthquakes to a known structure within the Cook Inlet basin, but the depths and focal 

mechanisms of these earthquakes are consistent with structures resulting from Upper Cook Inlet 

forearc basin deformation. 

A Ms 6.9 earthquake in 1933 with an epicenter location 10±31 mi (16±50 km) south of the Castle 

Mountain fault was widely felt in southern Alaska (Abe, 1984). Modified Mercalli intensity (MMI) 

maxima of the 1933 event were greatest on the northwest margin of Upper Cook Inlet. Haeussler 

et al. (2000) indicate that this intensity pattern is inconsistent with a subduction zone earthquake at 

this epicenter location, which would produce MMI maxima on the southeast side of Cook Inlet 

(Anchorage area). Instead, Haeussler et al. (2000) interpret the observed MMI from the 1933 

event, with maximum intensities on the northwest side of the Cook Inlet, to indicate a seismic 

source within the Cook Inlet forearc basin. 

2.2.2 Kenai Mountains and Chugach Mountains 

Located adjacent to the Aleutian megathrust and subduction zone, the Prince William Sound area, 

Kenai Mountains and Chugach Mountains (Plate 3) constitute one of the world’s largest 

accretionary complexes (Plafker et al., 1994a). In map view, this suite of features defines an 

arcuate, concave-to-the-south fabric, which reflects the deformational history of the accretionary 

prism within an evolving convergent plate margin. 
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The Kenai Peninsula encompasses two markedly different geomorphic domains: the Kenai 

Lowlands to the west and the Kenai Mountains to the east (Plate 3). The geomorphic domains are 

separated by the Border Ranges fault, a buried crustal suture separating the younger Mesozoic-

Cenozoic Southern Margin Composite terrane to the south and east, from the older Late Jurassic-

Early Cretaceous Wrangellia Composite terrane to the west and north. Extensive Late Wisconsin 

and earlier glacial deposits cover the Kenai Lowlands (Karlstrom, 1964), as reflected by the low 

relief and abundance of poorly drained bogs, ponds, and lake. 

The uplifted Chugach Terrane east of the Kenai Lowlands and north of Prince William Sound forms 

the Kenai and Chugach Mountains, which reach elevations up to 7,000 ft (2100 m) in the Kenai 

and up to 13,000 ft (4000 m) in the Chugach. The Chugach Mountains continue to the north and 

east, bounded to the north by the Border Ranges fault and to the south by Prince William Sound. 

The Chugach Mountains receive abundant annual precipitation and are the source of some of 

Alaska’s largest glaciers. 

The Chugach Terrane, as described by Plafker et al. (1994a), comprises the following three 

assemblages: (1) Late Triassic to Early Jurassic greenschist and blueschist; (2) Mississippian to 

Cretaceous melange of the McHugh Complex; and (3) Upper Cretaceous flysch of the Valdez 

Group. The geologic make up of these terranes is described in more detail below. In the Port 

Graham vicinity at the southwestern tip of the Kenai Peninsula, a small area of Upper Triassic to 

Jurassic rocks and minor outcrops of Tertiary Tyonek Formation have been assigned to the Hidden 

terrane of Wilson et al. (1999). The Chugach and Hidden terranes are separated by the Border 

Ranges fault. 

The Upper Cretaceous Valdez Group consists primarily of deformed metasedimentary greywacke, 

siltstone and shale, and is thought to have originated as turbidity current deposits along an oceanic 

trench (Tysdal and Case, 1979; Nelson et al., 1985; Winkler and Plafker, 1981; 1993). This 

assemblage also includes a variety of tholeiitic meta-volcanic and meta-intrusive rocks and locally 

a melange facies (Wilson et al., 2008). Metamorphic grade of the Valdez Group ranges from 

laumontite- to mid-greenschist-facies, with local amphibolite facies east of the Copper River 

(Nelson et al., 1985; Winkler and Plafker, 1981). 

The McHugh Complex consists of diverse and variably-aged (Mississippian to Cretaceous) 

materials (i.e., mélange) that represent multiple stratigraphic sequences, which were consolidated 

into a contiguous lithologic complex by underthrusting of the subducting Pacific plate. Melange 

materials include fault-bounded sequences of weakly metamorphosed clastic rocks (greywacke, 

arkose, siltstone, and conglomeratic sandstone); basaltic greenstone with associated radiolarian 

metachert, metasiltstone, and argillite; and bodies of gabbro and ultramafic plutonic rocks such as 

serpentinized dunite with chromite, pyroxenite (Bradley et al., 1999; Wilson et al., 2008). 
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At the southeastern tip of the Kenai Peninsula, there are minor exposures of the Tustumena 

pluton, a Paleocene to Eocene granite and granodiorite body that may be part of a larger batholith 

exposed intermittently throughout the area (Wilson et al., 2008). 

2.2.3 Talkeetna Mountains 

The Talkeetna Mountains (Plate 3) are an elevated block that lies between the Copper River and 

Susitna basins, and contain glaciated peaks between 6,560 and 9,840 ft (2000 to 3000 m) in 

elevation. The Talkeetna Mountains consist of an assemblage of northeast-trending lithotectonic 

terranes, or fault-bounded packages of rocks with a geologic history distinct from that of adjacent 

bodies, including the North Talkeetna Flysch basin (not shown on accompanying figures because it 

is located in the northern Talkeetna Mountains, well beyond the site radius) and Wrangellia 

Composite Terrane (Glen et al., 2007b).  The Wrangellia Composite Terrane is composed of 

largely late Paleozoic to early Mesozoic metavolcanic and metasedimentary rocks that originated 

well south of their current (~30° latitude) position, and likely were sutured together in the Late 

Jurassic (Csejtey et al., 1982).  The terrane was then accreted onto the North America craton in 

the mid to late Cretaceous, and translated northward to its current location via the Fairweather-

Queen Charlotte fault (Plate 2; Ridgeway et al., 2002).  Late Cretaceous through Tertiary volcanic 

and hypabyssal intrusions are also found throughout the Talkeetna Mountains and often intrude or 

overlie the Cretaceous accretionary structures. 

2.2.4 Western Alaska Range 

The Alaska Range (Plates 1 and 3) extends in a 406-mi-long (650-km-long) arc that roughly 

parallels the Aleutian subduction zone. It encompasses some of North America’s tallest peaks, 

including Mt. Mickinley, the tallest at 20,320 ft (6195 m). For much of its length, the Alaska Range 

is bisected by the Denali fault. Superimposed onto the eastern edge of the Alaska Range is the 

eastern Aleutian volcanic arc. Within the site region, this includes (from north to south) the Hayes, 

Spurr, Redoubt, Illiamna, and Augustine volcanoes (Plate 3). Augustine volcano is the most active 

volcano in the eastern Aleutian arc and has had multiple eruptions in historical times. In 1883, an 

eruption generated a tsunami in Cook Inlet from a debris avalanche.  

Upper crustal seismicity in the Alaska Range occurs primarily in the central and eastern portions, 

and is associated largely with the Denali fault. Seismicity in the western Alaska Range occurs at 

depths primarily below 37 mi (60 km), and is likely occurring within the deep subducting Pacific 

slab. 

2.3 Historical Seismicity 

The study region is characterized by moderate to high rates of seismicity, and the historical record 

contains several major earthquakes (defined as Mw greater than ~7), including the great Alaska 

earthquake of 1964, an Mw 9.2 event that is the second largest earthquake of the past 150 years 
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(Plate 4). The historical record of major earthquakes in most of greater southeast Alaska is robust 

and extends back in time to approximately 1918 (Page et al., 1991). The following paragraph 

describes the history of earthquake recordings in Alaska and paraphrases “Seismicity of 

Continental Alaska,” which was written by Page et al. (1991) and updated against Wesson et al 

(2007).  

Written accounts of seismicity in Alaska date back to at least 1786, with distal seismograph records 

of seismicity in Alaska beginning with a series of major earthquakes near Yakutat Bay in 1899. The 

first local seismograph was sited in Sitka in 1904, with a second added in 1935 at the University of 

Alaska near Fairbanks. Seismograph instrumentation greatly increased after the great Alaskan 

earthquake of 1964, with a four-station telemetered regional network installed by the University of 

Alaska at Fairbanks in south and south central Alaska in 1966, and a six-station telemetered 

network, the Alaska Tsunami Warning Center, installed in continental Alaska and the Aleutian 

Islands by the US Coast and Geodetic Survey (now NOAA) in 1967. By 1973, these two networks 

totaled nearly 40 stations. Regional seismograph networks increased to a peak in the early 1980s, 

including the operation of over 50 stations by the (United States Geological Survey) USGS in the 

Cook Inlet and Valdez area, now operated by the Alaska Earthquake Information Center (AEIC). In 

1983, university networks in western Alaska and the Kodiak Island region were discontinued, and 

by 1986 the number of stations operated by the USGS had dropped to 42.  In 1986, the AEIC was 

established by Alaska statute with the mandate to collect, analyze, and archive seismic event data 

for the state.  Currently, the AEIC records data from more than 400 stations across the state and 

reports on approximately 20,000 earthquakes a year (AEIC, 2013). 

Plate 4 shows a catalog of seismicity within the study region with epicenter symbols scaled by size 

and color-coded by depth (AEIC, 2013).  The earthquake catalog (Wesson et al., 2007) used in this 

project was assembled from a number of sources, including local networks and regional networks 

(US Geological Survey, and Harvard University). In discussions below, M can be considered 

equivalent to moment magnitude (Mw) unless otherwise noted. 

Significant major and great earthquakes within the study region include: 

 1899 M 7.2 Kenai earthquake 

 1912 M 7.1 Alaska Peninsula earthquake 

 1928 M 7.3 Gulf of Alaska earthquake 

 1933 M 7.1 Anchorage earthquake 

 1934 M 7.1 Southern Alaska earthquake 

 1946 M 7.2 Unimak earthquake 

 1949 M 7.0 Gulf of Alaska earthquake 
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 1964 M 9.2 Great Alaskan earthquake 

 2002 M 7.9 Denali earthquake 

 2014 M 7.9 Rat Islands earthquake 

Brief descriptions of all these major and great earthquakes are provided in Sections 2.2.1 through 

2.2.10 below.  Locations of these events are shown on Plate 4, where they can be identified by 

year and magnitude. Note that the 1964 M9.2 Great Alaskan earthquake occurred beyond the 

eastern edge of the site region. 

2.3.1 1899 M 7.2 Kenai Earthquake 

The 1899 M 7.2 was reported at Tyonek, AK as a “severe” (original source language) earthquake, 

but does not describe associated damage or deformation. The epicentral location is placed at 

60.0N, 150.0W beneath the Kenai Peninsula, approximately 25 mi (40 km) west of Seward (Stover 

and Coffman, 1993). 

2.3.2 1912 M 7.1 Alaska Peninsula Earthquake 

This earthquake has an epicentral location of 61.0N, 147.5W. Estimated focal depth of this event is 

56 mi (90 km), with an assigned maximum MMI of 5. No reports of injuries, damage, or surficial 

deformation are found (NGDC, 2012). 

2.3.3 1928 M 7.3 Gulf of Alaska Earthquake 

This earthquake has an epicentral location of 60.0N, 146.5W; estimated focal depth is unknown. In 

the Cordova area, the second of three distinct felt shocks was reported as the strongest, with men 

thrown from their bunks 30 mi (48 km) north of Cordova, cracking of plaster in Cordova, and 

numerous landslides in the mountains. Shaking in Valdez was described as “heavy,” and the felt 

area extended to Anchorage, Chickaloon, Matanuska, and Seward (Stover and Coffman, 1993). 

2.3.4 1933 M 7.1 Anchorage Earthquake 

This earthquake has an epicentral location of 61.25N, 150.75W, with an estimated focal depth of 

16 mi (25 km). Houses were shaken off of foundations at Old Tyonek, plate-glass storefront 

windows were broken, merchandise was knocked off shelves, and telegraph lines were down 50 

mi (80 km) from Anchorage. The felt area included Kodiak Island and along the Aleutian Islands, 

and aftershocks were numerous (Stover and Coffman, 1993). 

2.3.5 1934 M 7.1 Southern Alaska Earthquake 

This earthquake has an epicentral location of 61.25N, 147.5W, with an estimated focal depth of 50 

mi (80 km). Windows were broken, items thrown from shelves, and telephone lines were downed in 

Anchorage. The felt area extended to several towns in the region (Stover and Coffman, 1993). 
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2.3.6 1946 M 7.2 Unimak Earthquake 

This earthquake has an epicentral location of 59.11N, 148.94W, with an estimated focal depth of 

35 mi (56 km). Only minor seismic damage occurred to buildings on Unimak Island. The 

earthquake generated a tsunami with an estimated height of 115 feet (35 meters) which destroyed 

the Unimak lighthouse, caused damage at Dutch Harbor and the Aleutian Island of Ikatan, the west 

coasts of North and South America, and produced devastating losses at Hilo, Hawaii, of 159 lives 

and $26 million to property (Stover and Coffman, 1993). 

2.3.7 1949 M 7.0 Gulf of Alaska Earthquake 

This earthquake has an epicentral location of 59.75N, 149.0W, with an estimated focal depth of 31 

mi (50 km). There are no reports of damage associated with this event. 

2.3.8 1964 M 9.2 Great Alaskan Earthquake 

The M 9.2, March 28, 1964 Great Alaskan earthquake had an epicenter approximately 47 mi (75 

km) west of Valdez, in the north Prince William Sound. The subsurface rupture area encompasses 

the entire study region. The isoseismal map of the event shows the study region experienced 

ground shaking with Modified Mercalli scale intensities of VII in the Cook Inlet region, and VIII to X 

in Prince William Sound, eastern Kenai Peninsula south to Seward, and west to Anchorage and 

Turnagin Arm (Stover and Coffman, 1993). The earthquake is one of the largest events ever 

recorded since global instrumental recordings began in the late 1800s. 

The 1964 earthquake ruptured approximately 497 mi (800 km) of the Aleutian megathrust with left-

lateral reverse-slip motion, and produced approximately 66 ft (20 m) of maximum displacement 

(Christensen and Beck, 1994). The earthquake was felt over 700,000 square miles (1.8 million 

square kilometers) in Alaska and Canada. Coseismic vertical displacements affected an area of 

about 200,100 square miles (520,000 square kilometers). Prince William Sound experienced up to 

38 ft (11.5 meters) of uplift, and 7.5 ft (2.3 meters) of inland subsidence (relative to sea level) 

occurred (Plafker, 1967). A total of 15 fatalities were attributed to the earthquake and 113 from the 

ensuing tsunami. In Anchorage the earthquake destroyed structures up to 6-stories-high and 

triggered numerous destructive landslides. On the Kenai Peninsula published literature 

documented extensive ground breakage which included ground cracking, and ground cracking with 

associated eruptions of sand and water. 

2.3.9 2002 M 7.9 Denali Earthquake 

The Mw 7.9 2002 Denali fault earthquake is the largest onshore strike-slip earthquake in North 

America in the past 150 years (Eberhart-Phillips et al., 2003). The earthquake initiated on the 

previously unrecognized Susitna Glacier thrust fault with a 30 mi (48 km) surface rupture and up to 

36 ft (11 m) of displacement (Crone et al., 2004). The earthquake then propagated eastward, 

rupturing 140 mi (226 km) of the central Denali fault and 41 mi (66 km) of the Totschunda fault. 
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Average slip along the Denali fault was approximately 16 ft (5 m) with a maximum slip of 29 ft (8.8 

m) west of the junction with the Totschunda fault (Haeussler et al., 2004). The earthquake caused 

no fatalities and minimal damage to infrastructure, likely because of the sparse population density 

near the fault. Maximum estimated intensities of the earthquake in the Study Region are Modified 

Mercalli scale IV in Prince William Sound and the Kenai Peninsula, and V to VI in the Susitna 

Basin at the northern Cook Inlet shoreline and in the Chugach Mountains northwest of Anchorage 

and Prince William Sound (USGS, 2011). 

2.3.10 2014 M 7.9 Rat Islands Earthquake 

The June 23, 2014 Rat Islands occurred about 1,200 miles (2,000 km) west of the site in the 

central part of the Aleutian arc at a depth of about 62 mi (100 km). Although it occurred a 

significant distance from the site, it is important because it is the largest intraslab earthquake to be 

included in the historic catalog for the Alaska-Aleutian arc. The occurrence of this event caused the 

Mmax of intraslab events to be raised to M 8.0, from the M 7.5 of previous studies (e.g., Wesson et 

al., 2007).  

The focal mechanism for the mainshock is consistent with a normal faulting event on either a 

northwest-striking plane that dips steeply to the northeast, or northeast-striking plane that dips at a 

shallow angle to the southeast. While the USGS rupture inversion prefers the northeast-striking 

plane, similar analysis by Cedric et al. (2014) prefers the northwest-striking, steeply dipping plane. 

If this is confirmed, the earthquake would be similar in tectonic character to intraslab events in the 

Puget Sound region. 

2.4 Potential Seismic Sources in Southern Alaska 

Potential seismic sources in the study region originate within one of four tectonic environments, 

which are described in the sections below. Any one of these environments may include multiple 

types of fault sources. The four tectonic environments include: (1) the Aleutian subduction zone, 

(2) the Yakutat microplate, (3) the deep Pacific Plate intraslab, and (4) the Southern Alaska Block. 

The extents of these features, except for the Pacific Plate intraslab, are shown on Plate 2.  

2.4.1 Aleutian Subduction Zone 

The Aleutian subduction zone (Plate 2) is one of the longest and most tectonically active plate 

boundaries in the world.  It extends for nearly 2,485 mi (4000 km) from south central Alaska to the 

Kamchatka peninsula in eastern Russia, and has produced one of the world’s largest 

earthquakes—the 1964 M 9.2 Great Alaskan earthquake.  The subduction zone is comprised of 

three distinct tectonic environments: (1) A continental subduction zone in the east; (2) an island 

arc, which is defined by the central Aleutian volcanic chain; and (3) a zone of oblique subduction 

and transform tectonics in the west (Nishenko and Jacob, 1990).  The eastern section is the most 
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significant portion of the subduction zone with respect to the evaluation of the seismic hazards in 

the Cook Inlet basin because of its proximity.  

The geometry of the down-going Pacific Plate within a few hundred kilometers of the site is fairly 

well-known because of studies of the 1964 M 9.2 earthquake, seismic refraction/reflection surveys 

(e.g., Brocher et al., 1994), and research results from a regional seismograph network operated by 

the Alaska Earthquake Information Center (AEIC) (Ratchkovski and Hansen, 2002). Beneath 

Prince William Sound and the Kenai Mountains (Plate 3), the plate interface has an extremely low 

dip down to a depth of approximately 19 to 25 mi (30 to 40 km).  Below this depth it descends into 

the upper mantle. Further to the northwest, the slab dip increases rapidly. 

Historical seismicity demonstrates that the length of seismic rupture of the Aleutian interface may 

be controlled by segmentation boundaries. Studies of subsided peats and sediments in the Cook 

Inlet (Hamilton and Shennan, 2005; Hamilton et al., 2005; Shennan and Hamilton, 2006) provide 

additional constraints on recurrence intervals and the segmentation of the Aleutian subduction   

interface zone. 

2.4.2 Yakutat Microplate 

The Yakutat terrane, or microplate, is a 373-mi-long, 124-mi-wide (600-km-long, 200-km-wide) 

allochothon, which is bounded on the southwest by the Transition fault (Plate 2, Haeussler, 2008). 

A 140-mi-long (225-km-long) portion of the microplate is being underthrust below the Chugach 

terrane, forming the present-day Chugach/St. Elias Range (Plafker, 1987; Meigs and Sauber, 

2000; Montgomery, 2002; Spotila et al., 2004; Berger and Spotila, 2008; Berger et al., 2008; Perry 

et al., 2009). Geophysical, seismic and structural studies indicate that the Yakutat terrane arrived 

at its present location sometime after the early Pliocene (Bruns, 1983; Fletcher and Freymueller, 

1999, 2003; Perry et al., 2009).  

GPS measurements of contemporary regional strain show that the Yakutat microplate is moving 

northwest at ~1.7 in/yr (44 mm/yr) relative to the Southern Alaska Block (Elliott et al., 2010; Plate 

2). The velocity is similar in magnitude, albeit slower, to the Pacific Plate, which introduces 

substantial coupling between the two plates.   

The overall north-directed motion of the Yakutat microplate is well documented; however, details 

regarding the number, location and style(s) of faulting within the microplate itself are poorly 

understood (Wesson et al., 2007). Current tectonic models infer the presence of several east-

striking, north-dipping thrust faults beneath the heavily glaciated region along the onshore portion 

of the southern Alaska coast (Wesson et al., 2007).  

2.4.3 Intraslab 

Intraslab earthquakes occur within the down-going Pacific Plate where the slab dip increases as it 

descends into the upper mantle, below the megathrust interface with the North America Plate.  
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These intraslab earthquakes, considered capable of reaching magnitudes of M 8.0, are due to 

factors such as ridge-push, gravitational pull of the down-going slab plate, and metamorphic 

reactions due to increasing temperature and pressure within the down-going plate. Notable analog 

earthquakes within similar tectonic settings include the 1965 M6.5 and 2001 M6.8 Nisqually, 

Washington earthquakes associated with the Cascadia subduction zone. In the study region, the 

intraslab earthquake zone consists of two parts: an intermediate zone that dips east at about 25° 

and located at depths between 31 and 50 mi (50 and 80 km), and a deeper zone that dips more 

steeply and is located at depths between 50 and 93 mi (80 to 150 km; Wesson et al., 2007). The 

June 23, 2014 M 7.9 Rat Islands earthquake (Section 2.2.10) is highly relevant to our estimation of 

maximum magnitudes of this seismic source.  

2.4.4 Southern Alaska Block 

The Southern Alaska block, a portion of the North American Plate that underlies the site and 

overrides the subducting Pacific Plate, includes a number of seismogenic faults. Individual faults 

considered in the source model are described below, and are based on documented or assumed 

activity levels described in the published literature. These faults are included in the source model 

either because of their ability to generate large earthquakes, or their close proximity to the site.  

2.4.4.1 Castle Mountain fault 

The Castle Mountain fault (Plate 3) is an active, reverse or oblique-reverse fault that can be divided 

into eastern and western sections. The eastern section is combined with the Caribou fault of 

Plafker et al. (1994b) based on parallel surface traces and evidence that both faults have 

Quaternary displacement. The eastern section of the fault is primarily recognized in bedrock and 

has no evidence for Holocene surface rupture; however, it does have documented historical 

seismicity of Mb 5.7 (1984 EQ documented in Lahr et al. 1980). The western section is defined by 

a 39-mi-long (62-km-long) Holocene fault scarp (north side up), but no known large historical 

seismicity (Flores and Doser, 2005). The fault trace was mapped in detail by Detterman et al. 

(1974) and again by Haeussler (1998) and Koehler et al., (2012b). The fault has a reported dip of 

75° to the northwest (Koehler et al., 2012b). 

Trenching by Haeussler et al. (2002) on the western section identified four paleo-earthquakes on 

the fault (including one event on an adjacent fault strand) in the past 2,800 years, yielding a 

recurrence interval of approximately 700 years. The most recent rupture occurred 795-675 years 

ago, which Haeussler et al. (2000) used to determine a shortening rate of 0.003 to 0.006 in/yr (0.07 

to 0.14 mm/yr).  No evidence for lateral offset was observed in the trenches. In contrast, Willis et 

al. (2007) used an interpreted offset post-glacial outwash channel on the western section to 

constrain a lateral slip rate of 0.11 to 0.14 in/yr (2.8 to 3.6 mm/yr), with a preferred rate of 0.12 to 

0.13 in/yr (3.0 to 3.2 mm/yr). Koehler and Reger (2011) propose that a lateral slip rate of 0.018 to 
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0.025 in/yr (0.45 to 0.63 mm/yr) may be more appropriate for the western section. Fuchs (1980) 

proposed a post-Eocene slip rate of 0.020 to 0.024 in/yr (0.5 to 0.6 mm/yr) for the eastern section.  

The Castle Mountain fault has traditionally been classified as a strike-slip fault (e.g., Bruhn and 

Haeussler, 2006; Haeussler and Saltus, 2011) based on the interpreted presence of drag, or 

wrench-style, folding exhibited by axes of the Cook Inlet anticlines as they approach the fault from 

the south (Plate 3). This interpretation has been challenged by recent field- and lidar-based fault 

mapping, which demonstrates that a series of Holocene geomorphic markers (e.g., stream 

channels, terrace margins and sand dunes) are offset vertically by the fault, but not laterally 

(Koehler et al., 2012b); at least not within the horizontal detection limit of lidar data.  These new 

studies provide robust evidence that, at least in terms of Holocene activity, the Castle Mountain 

fault is best characterized as a north-dipping reverse fault with only a minor component of 

permissible right-slip.  Koehler et al. (2012b) report a vertical uplift rate of ~0.020 in/yr (0.5 mm/yr). 

2.4.4.2 Lake Clark fault 

The Lake Clark fault is an approximately 154-mi-long (248-km-long) right-oblique reverse fault that 

extends northeastward from Lake Clark in the Aleutian Mountains to its terminus near the Beluga 

River (Plate 3). From this point, the Castle Mountain fault continues along the same trend 

northeastward through the Talketna Mountains (Koehler and Reger, 2011). Published literature 

documents approximately 1,640 to 3,280 ft (500 to 1000 m) of reverse motion along the Lake Clark 

fault based on the displacement of Tertiary formations, and 3 to 16 mi (5 to 26 km) of right lateral 

offset since the Eocene (Plafker et al., 1975; Detterman et al., 1976; Haeussler and Saltus, 2004).  

Owing to the apparent along-strike continuity, it has been questioned whether the Lake Clark fault 

and the known-active Castle Mountain fault could be related fault segments. However, there is 

evidence for at least four Holocene earthquakes on the Castle Mountain fault, while evidence of 

Quaternary activity on the Lake Clark fault is ambiguous (Plafker et al., 1975; Schmoll and Yehle, 

1987; Haeussler and Saltus, 2004; Koehler and Reger, 2011). Initial studies by Plafker et al. (1975) 

documented no apparent offset of topographic features or glacial deposits, while later work by 

Schmoll and Yehle (1987) inferred that faulting does offset moraines of early Naptowne age 

(approximately 60 to 130 thousand years ago) in the vicinity of Lone Ridge on the northwest side of 

Cook Inlet.  

Recent work by Koehler and Reger (2011) concluded that no definitive geomorphic evidence exists 

to indicate offset of the early Naptowne age glacial deposits. The absence of definitive evidence 

may suggest the fault has a relatively low rate of activity and likely has not generated a surface 

rupturing earthquake since at least 60 thousand years ago (Koehler and Reger, 2011). According 

to the Alaska Quaternary Fault and Fold database (QFF) (Koehler et al., 2012a), the Lake Clark 

fault has been classified as a suspicious feature with a ”slip rate that cannot be determined using 

geologic reasoning”. 
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2.4.4.3 The Denali fault 

The Denali fault defines the northern margin of the Southern Alaska block (Haeussler, 2008; Plate 

2), and has been a major structural component of Alaska since it formed as a crustal suture during 

the Late Jurassic to early Cretaceous (Ridgeway et al., 2002). Offset of 56 million-year-old 

metamorphic and intrusive rocks suggests at least 249 mi (399 km) of total right-lateral 

displacement along the fault (Nokleberg et al., 1985). Offset is further constrained in the Denali 

region where the 38 million-year-old Mt. Foraker pluton is displaced 24 mi (38 km) from the 

McGonagal Pluton (Reed and Lamphere, 1974).   

In 2002, the Denali fault produced a M 7.9 earthquake, the largest strike-slip earthquake to occur in 

North America in almost 150 years (Eberhart-Phillips et al., 2003). Detailed studies of offset glacial 

features along the fault following the 2002 earthquake have demonstrated a clear westward 

decrease in the Quaternary slip rate along the fault (Matmon et al., 2006; Meriaux et al., 2009).  

Shaking from the 2002 M 7.9 earthquake was described as “light” in the Nikiski-Kenai area (USGS, 

2011): An intensity of IV based on the Modified Mercalli Intensity (MMI) Scale (USGS, 1989).  Light 

shaking is described as: “Felt indoors by many, outdoors by few during the day. At night, some 

awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy 

truck striking building. Standing motor cars rocked noticeably.”  

The Denali fault lies outside the north margin of the 124 mi (200 km) site radius that defines study 

region (Plate 3). However, because of its regional significance and seismogenic potential, it is 

described here for completeness. Previous analysis shows that the contribution of this fault to 

ground motions at the site is minimal, and that its contribution to the hazard at the site is 

insignificant (Fugro-McClelland, 2012a). The low ground shaking hazard at the site from this fault 

source is attributed to its great distance, and its subvertical dip.  

To confirm the results of these earlier studies, a sensitivity analysis was performed to evaluate the 

contribution of the Denali fault to the hazard and the response spectra at the project site.  The 

analysis is presented in Appendix B. Results from the sensitivity analysis confirm that the Denali 

fault does not affect the estimated ground motion hazard at the project site, and that exclusion of 

this fault from the source model has a defensible and robust basis.  
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3.0  SEISMIC SOURCE CHARACTERIZATION 

3.1 Introduction 

Available information regarding the seismogenic features of southern Alaska and the Aleutian 

subduction zone was evaluated to develop a seismic source model for calculation of probabilistic 

earthquake ground motions at the Nikiski site.   

Potential earthquake sources were identified and characterized based on the following data: (1) 

peer-reviewed literature, (2) published geologic maps, (3) historical seismicity, (4) geospatial data 

(e.g., topography and bathymetry), (5) proprietary 2D seismic reflection data, (6) Fugro (Fugro 

Report No. 04.10140334-7) 2D seismic reflection data collected for AKLNG, and (7) unpublished 

reports. 

The seismic source model includes four categories or types of seismic sources, each representing 

a part of the seismic source model, and each requiring a different characterization of seismic 

source parameters or treatment in the PSHA calculations.  The four types of seismic sources 

identified in the study region include the following:  

1. Great megathrust earthquakes produced by coupling at the subduction interface, and 

defined by the geometric components of the subduction interface. 

2. Intermediate and deep intraslab seismicity associated with the subducted Pacific Plate, or 

“slab”. This source originates at depths greater than about 12 mi (20 km) at the Aleutian-

Alaskan trench, and then deepens to the northwest beneath Cook Inlet to greater than 31 

mi (50 km) (Ratchkovski and Hansen, 2002). 

3. Shallow crustal line sources, which include known seismogenic faults within the upper crust 

of the North America plate.  Examples of these types of sources are the blind thrust/reverse 

faults that core the anticlines in upper Cook Inlet, the Castle Mountain fault, and Lake Clark 

fault.   

4. Shallow crustal areal sources, which capture seismicity not attributable to any known 

crustal fault sources in the North America plate. This source includes contributions based 

on the rate of observed seismicity in the broader region surrounding the site.  

Subduction interface and shallow crustal fault sources (items 1 and 3 from above) were individually 

characterized from paleoseismic, geophysical and geologic information (Section 3.0), and are 

represented in the PSHA calculations (Section 4.0) as fault sources. Intraslab and shallow crustal 

seismicity were characterized based on observed seismicity rates and are represented in the 

PSHA as distributed areal sources. 
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In the PSHA calculations, the subduction interface and the fault sources are modeled as planar 

sources and are characterized in terms of geometry, magnitude, recurrence, and fault activity 

parameters — as required for probabilistic seismic hazard analysis. The intraslab and shallow 

crustal seismicity are modeled as smoothed gridded sources with grid spacing of 0.1° in latitude 

and longitude. Many components of the subduction zone model follow Wesson et al. (2007). 

In the text that follows, Section 3.2 discusses the characterization of the subduction interface, 
Section 3.3 discusses the intraslab sources, Section 3.4 provides a detailed description of the 
crustal fault sources, and Section 3.5 discusses upper crustal gridded areal seismicity sources. 

3.2 Aleutian Subduction Zone Interface 

The Aleutian subduction interface, a source of great earthquakes (≥ M 8.0) potentially affecting the 

study region, is modeled in three sections and is based on the USGS model of slab contours and 

segmentation boundaries (Wesson et al., 2007). Model parameters used for the subduction zone 

sources are listed in Table 3.1. 

3.2.1 Interface Geometry 

The geometry of the subduction interface sources is defined by the dip, dip direction, up-dip limit 

depth, and down-dip limit depth.  The modeled geometries of sources S1, S2 and S3 are shown on 

Plate 7. The S1 and S2 sections model the plate interface between the subducting Pacific Plate 

and the North America Plate, which was the source of the 1964 M 9.2 earthquake. S1 models the 

section under Kodiak Island, and S2 the section beneath the Kenai peninsula. Although the 

interface surface appears to be warped but continuous, the planar models used here require the 

division into two sections in order to model distances to the site correctly. The third section (S3) 

models the plate interface between the Yakutat microplate and the Pacific Plate. Each section is 

specified to rupture individually; S1 and S2 rupture on northwest-dipping planes, and S3 ruptures 

on a north-dipping near-horizontal plane. The sections of the plate interface model are as follows: 

 S1: This section models the slab interface in the western portion of the estimated 1964 

rupture zone, and is defined as a 199-mi-long by 118-mi-wide (320-km-long by 190-km-

wide) plane dipping 6.0° to the northwest. Its western terminus parallels the western shore 

of Kodiak Island and the modeled interface plane extends up-dip to the subduction interface 

to the southeast. The shallowest southeastern edge of the fault plane is modeled at a depth 

of 12 mi (20 km) and deepens down-dip to 25 mi (40 km) depth at the northwestern edge. 

 S2: This section models the eastern portion of the estimated 1964 rupture zone as an 

approximately 217-mi-long by 186-mi-wide (350-km-long by 300-km-wide) plane dipping 

3.4° to the northwest. Its western terminus underlies the eastern boundary of the Kenai 

lowlands, and the modeled interface plane extends up-dip to the subduction interface to the 

southeast. The shallowest southeastern edge of the fault plane is modeled at a depth of 12 

mi (20 km). At this same location, Wesson et al. (2007) modeled the down-dip edge of the 



  

Report No. 04.10140334-6  
 

3-3 
 

Confidential 
LNG Facilities Probabilistic Seismic Hazard Analysis (PSHA) Report 

USAL-FG-GRHAZ-00-002015-001 Rev.0 
5-May-2016 

 

megathrust as deepening from 21 mi (33 km) at the northeast corner to 25 mi (40 km) at the 

southwest corner. S2 approximates this by fixing the down-dip (northwest) edge at 24 mi 

(38 km).  

 S3: This section represents the subduction interface segment beneath the Yakutat 

microplate and the underlying Pacific plate at the eastern end of the Aleutian subduction 

zone.  In this area, the predominantly convergent-style margin of the Aleutian-Alaskan arc 

becomes predominantly a transform-style margin of southeastern Alaska. The subduction 

interface in this segment is modeled as a 205-mi-long by 137-mi-wide (330-km-long by 220-

km-wide) horizontal plane at 9 mi (15 km) depth.  Approximate structural boundaries of this 

modeled plane are the western convergent portion of the Transition fault, Aleutian 

megathrust, Chugach-St. Elias fault, and Fairweather fault (Plate 2).  

3.2.2 Interface Activity Rate Scenarios, Recurrence, and Magnitudes 

Both time-independent and time-dependent rates were used for the interface M 9.2 S2 source. A 

time-dependent occurrence rate for a seismic source is based on the concept of a regular time 

interval between large events. The more recently a large earthquake occurred, the longer the time 

until the next earthquake, and vice versa. Because the 1964 M9.2 event occurred only 50 years 

ago, and its repeat time appears to be about 535 years on average (Shennan et al., 2014), it was 

judged that some credence should be given to the idea that during the life of the structure the 

annual rate of occurrence will be less than the time-independent rate of 1/535 per year. Time-

dependent versus Poissonian (non-time-dependent) models were weighted 0.33 and 0.67, 

respectively.  

Following Wesson et al. (2007) and the time-dependent analysis presented in this report, the 

following maximum magnitude events and rates are assigned to the subduction interface sections:  

 S1: M 8.8, with a time-independent (Poissonian) annual rate of 1/650 assigned;  

 S2: M 9.2, with a rate of 1/802 assigned. This is the result of a time-independent 

(Poissonian) annual rate of 1/535 based on paleoseismic investigations (Carver and 

Plafker, 2008) weighted 0.67, and a time-dependent rate of 8.66e-06 weighted 0.33, for an 

assumed 50-year exposure period for the facility (Appendix A); 

 S3: M 7 – 8.1, annual rates determined by a truncated exponential recurrence with M >= 7 

rate of 1/303 and b-value of 0.666.  

The M 7 to 8 non-Yakutat interface earthquakes are modeled as exponentially distributed 

according to rates in Wesson et al. (2007). The a and b Gutenberg-Richter recurrence parameters 

for this source were taken from their Table 3. Because in that Table a-values are for the entire 

Aleutian arc, they were scaled by the proportional areas of S1 plus S2. A slip rate was then 
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calculated that produced the same seismicity rate as the scaled a-value.  Earthquakes in this 

magnitude range are modeled as occurring on the fault planes defined by S1 and S2.  

Interface earthquakes in the M 5 to M 7 range are modeled as gridded, smoothed seismicity. As 

described in Wesson et al. (2007), this model is created by sorting seismicity into 0.1° bins, and 

performing Gaussian smoothing with a correlation distance (Frankel, 1995) of 47 mi (75 km). The 

grid sources were placed at a depth of 3 mi (5 km), as in Wesson et al. (2007).   

3.3 Intraslab Source 

Intraslab seismicity associated with the Aleutian Subduction Zone in the study region comprises 

Benioff zone seismicity with focal depths between 31 to 75 mi (50 and 120 km), associated with the 

subducting Pacific slab. For the intraslab source, we used the Wesson et al. (2007) model, which 

consists of gridded seismicity for two depth levels: 31 to 50 mi (50 to 80 km) (Plate 8) and 50 to 75 

mi (80 to120 km) (Plate 9) with a magnitude range of 5.0 to 8.0. Following Wesson et al. (2007), 

the depth for the 31-50 mi (50-80 km) sources was set at 37 mi (60 km), and 56 mi (90 km) for the 

50 to 75 mi (80 to 120 km) points. The grid selection extent is defined as all points north of latitude 

54.5N and east of longitude 162W.  

This seismicity is modeled as a truncated exponential distribution with the b-value shown in Table 

3 of Wesson et al. (2007), and the incremental a-value for each grid point contained in the grid files 

obtained from the USGS website: 

(http://earthquake.usgs.gov/hazards/products/ak/2007/software/AK2007Inputs.zip). 

3.4 Shallow Crustal Fault Sources 

Twenty-two crustal faults that represent potential sources of seismic activity and strong ground 

shaking within the site region are included in the source model (Tables 3.2 and 3.3). Modeled fault 

sources consist of three structural features and/or provinces: (1) blind thrust and reverse faults that 

underlie anticlines in upper Cook Inlet (F1 through F15, F21 and F22, Plate 10); (2) the Castle 

Mountain fault (F16 through F18, Plate 11); and (3) the Lake Clark fault (F19 and F20, Plate 11). 

Parameters used to model the seismic sources included dip magnitude, dip direction, depth of the 

seismogenic zone, depth to the tip of the blind fault, slip rate, and potential earthquake magnitude. 

Of the structures in the source model, only the Castle Mountain fault (F16 to F18) has documented 

historical surface ruptures and a well-constrained paleoseismic history. The Lake Clark fault (F19 

and F20) is considered a potential seismic source because of its structural continuity with the 

known-active Castle Mountain fault and its inclusion in the Alaska Quaternary fault and fold 

database (QFF; Koehler et al., 2012a). Fault-cored folds in the upper Cook Inlet (F1 through F17, 

F21 and F22) are considered potential seismic sources because of spatially-associated historical 

seismicity (Flores and Doser, 2005), and the presence and deformation of Quaternary-aged growth 

strata interpreted on the fold flanks (Haeussler et al., 2000).   
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Geometric properties of the shallow crustal sources underlying the Cook Inlet anticlines have been 

updated in this study based on (1) interpretation of proprietary 2D seismic reflection data within the 

structural extent area (Plate 12), and (2) review of publically-available scientific literature. New 

constraints on these shallow crustal sources include fault location, length, dip magnitude, dip 

direction, depth of blind fault tips, and maximum moment magnitudes. We used a logic-tree 

approach to assign weighted distributions for each of the fault parameters listed above. Uncertainty 

in fault length is not considered in this update due to a lack of information available to support 

alternative scenarios. 

Parameters obtained from the best-constrained structures were applied uniformly to the poorly 

characterized structures.  The latter occur in areas where data are either sparse, unavailable or of 

poor quality. By extrapolating parameters between faults, we assume that deformation occurs 

uniformly across Cook Inlet and is predominantly contractional. These assumptions are somewhat 

simplified, but were made based on the similar orientations of the fold axes, and the roughly 

perpendicular orientations of the folds with respect to the maximum compressive stress axis in 

upper Cook Inlet (e.g., Haeussler et al., 2000; Bruhn and Haeussler, 2006; Flores and Doser, 

2005).   

A preferred Mmax is calculated for the Castle Mountain fault based on the magnitude-area formula 

from Wells and Coppersmith (1994). Given the poor characterization of the remaining sources, we 

follow the precedent of prior published studies (Haeussler et al., 2000; Wong et al., 2008) and 

calculate a preferred Mmax based on length-scaling relationships developed in Wells and 

Coppersmith (1994). Only a single magnitude estimate is used for these sources. Thus, the 

recurrence model can be defined as a maximum moment model.  

Characteristics of the 22 fault sources are shown in Tables 3.2 and 3.3, and their modeled map-

trace locations and geometries are shown on Plates 10 and 11. 

3.4.1 Cook Inlet fault-cored folds 

Seventeen shallow fault sources (F1 through F15, F21 and F22) are modeled within Cook Inlet. 

These sources define steeply- to moderately-dipping blind reverse faults that core or underlie the 

Cook Inlet anticlines (Haeussler et al., 2000; Bruhn and Haeussler, 2006). Prior to this study, the 

anticline axes from the QFF (Koehler et al., 2012a) were used as proxies for locating and defining 

the lengths of underlying faults. In the current study, we update these parameters based on 

expression of subsurface faulting (or lack thereof) interpreted from the industry and AKLNG 

seismic reflection data, and from review of scientific literature and unpublished technical reports.   

Industry seismic reflection data were reviewed by Fugro in the data room at ConocoPhillips’ (CoP) 

in Anchorage, Alaska during the week of 05 October 2015. These data supplement other CoP 2D 

seismic reflection data, which were reviewed by Fugro in 2012 for the earlier AKLNG siting study 

(Fugro-McClelland 2012b). The locations of the 2D seismic reflection lines reviewed in this study 
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are shown in (Plate 12).  Because of commercial concerns, Fugro was allowed to view and take 

screen captures (JPEG and TIFF format) of the data, but could not retain the native SEGY files. 

Fault location  

For the purposes of this study, the term fault location refers to the spatial coordinates of the tip-line 

or up-dip extent of the blind reverse faults that underlie the Cook Inlet anticlines. Because the 

faults within the structural extent are blind, the tip-lines lie well below sea level.  

To establish XY coordinates for the source model, screen-grabs of the vertical seismic displays 

collected in Alaska were georeferenced in ArcGIS using the end point locations of the 

corresponding seismic reflection acquisition lines.  Locations of the acquisition lines were also 

established by georeferencing base maps showing the lines relative to geographic features. 

Subsurface picks on key structural elements interpreted on the reflection panels (e.g., fault tip 

lines, fold hinges and down-dip points along fault planes) were projected vertically to the surface, 

akin to an earthquake epicenter map, and attributed as point shapefiles.  

To define the depth coordinates, two-way travel times (in milliseconds) of fault tip picks were 

depth-converted on a point-by-point basis using a velocity model developed from the 2015 onshore 

seismic reflection program (Fugro Report No. 04.10140334-7).  These values were subtracted from 

ground surface elevation obtained from a composite digital elevation model (DEM) created by 

Fugro to derive absolute elevation. The Fugro DEM is a compilation of multiple elevation and 

bathymetric datasets, which include: (1) NOAA’s AFSC/RACE Cook Inlet bathymetry data 

(Zimmerman and Prescott, 2014); (2) Fugro’s high-resolution multi-beam echo sounder bathymetry 

data collected for the AKLNG project immediately offshore from the site (Fugro Report No. 

04.10140334-7); (3) onshore topography from USGS NED 30-m data (USGS, 1999) for shoreline 

and terrain areas away from the site; (4) approximately 2.5-meter-resolution lidar digital elevation 

data (USGS, 2008) for the larger area surrounding the site; and (5) approximately 1-meter-

resolution lidar digital elevation data provided by the Client for the area directly surrounding the 

site. 

There was some scatter in the fault-tip pick locations due to epistemic uncertainty regarding the 

ability to identify or resolve the shallowest offset seismic reflection. To account for the scatter, a 

qualitative or visual-based “best-fit” fault tip-line was generated through the scattering of points, 

and was used to define the line geometry of that structure in the seismic source model (Plate 10).  

For structures that lacked adequate industry seismic reflection coverage, fault locations were 

based on the published traces of corresponding anticline axes (Koehler et al., 2012a). These 

structures include: Falls Creek–Ninilchik anticline (F1), Kasilof anticline (F2), West Fork anticline 

(F6), Nicolai Creek anticline (F10), Moquawkie anticline (F11), Ivan River anticline (F14), Stump 

Lake anticline (F15), Sterling anticline (F21), and Trading Bay–North Trading Bay anticline (F22).  
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A key result of the seismic reflection interpretation effort is that the fault tip-lines have been shifted 

laterally away from the overlying fold axes. For example, the distance to the tip-line of the Middle 

Ground Shoal fault (F7), which lies west of the Site and represents the closest seismic source, has 

decreased by approximately 2 miles (3.2 kilometers) compared to the closest distance used in 

Phase 1 PSHA for that fault. To the east, the distance to the tip-line of the Kenai–Cannery Loop 

fault (F3), the next closest seismic source, has decreased by approximately 3 miles (5 kilometers). 

This result is consistent with fault-fold models (e.g., Suppe and Medwedeff, 1990; Allmendinger, 

1998), which demonstrate that tips of blind contractional faults typically underlie the hinge lines 

between the anticline forelimb and adjacent synclinal flat, and not the fold crest (Plate 13).  

Fault length 

Fault lengths used in the previous seismic source model (Fugro Report No. 04.10140094-6) were 

based on the published lengths of the Cook Inlet anticline axes from the QFF (Koehler et al., 

2012a).  In this update to the source model, individual fault lengths were determined based on 

review of the industry seismic reflection data. These data were used to confirm or refine the 

published fault length values and evaluate potential structural connectivity, if any, between 

adjacent structures (e.g., the Middle Ground Shoal and Granite Point anticlines). In areas of 

inadequate seismic reflection coverage, some structures were linked (i.e., they have the potential 

to rupture together) if: (1) overlying fold terminations lay within a few kilometers of one another, (2) 

fold axes can be reasonably projected along strike into one another, (3) published literature 

suggests a potential structural link, and/or (4) the likelihood of structural connectivity cannot be 

confidently negated. Final fault lengths are presented in Table 3.2.   

Updates to the source model were made to the following structures: Kenai-Cannery Loop anticline 

(F3), Swanson River anticline (F4), Beaver Creek anticline (F5), Middle Ground Shoal–Granite 

Point anticlines (F7), McArthur River–Redoubt Shoal anticlines (F8), West McArthur River anticline 

(F9), North Cook Inlet anticline (F12), Beluga River–Lewis River anticlines (F13), and Trading Bay–

North Trading Bay anticlines (F22).  

The most notable changes in fault lengths include: 

 The Middle Ground Shoal and Granite Point fault-fold system (F7) has a combined length 

of 42 miles (67 km), which is approximately 1.8 miles (3 km) longer than in the 2015 Phase 

1 model (Fugro Report No. 04.10140094-6). The increase in length is based on the 

presence of low-amplitude folding of reflectors along strike and beyond where the fold 

terminations are shown on published maps (e.g., Koehler et al., 2012a). Similar to previous 

studies (Haeussler et al., 2000; Haeussler and Saltus, 2011; and the Phase 1 PSHA study 

(Fugro Report No. 04.10140094-6)), the Middle Ground Shoal and Granite Point anticlines 

are modeled as a single structure because both folds overlie an interpreted through-going 

master fault. The master fault is east vergent (i.e., it dips to the west), while the folds are 
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west vergent (i.e., they are asymmetric in profile view, with the steeper limb on the west 

side of the fold). The fold vergence is controlled by an east-dipping backthrust that roots 

into the master fault at depth (Plate 14). Based on the interpreted fault geometry in profile 

203-290 (Plate 14), the McArthur River-Redoubt Shoal (F8) and West McArthur River (F9) 

faults (Plate 10) are also backthrusts that root into the master fault at depth. Reverse 

motion on the master fault has generated an east-side-down step in the top of Mesozoic 

basement (Plates 5 and 14). The Middle Ground Shoal and Granite Point anticlines formed 

above this step on the hinge line of what becomes a monocline at depth (below 

approximately 3000 msec Two-Way Travel Time (TWTT) on Plate 14). This fault system 

has been interpreted in the literature as a basement-cored fault-propagation fold (Haeussler 

et al., 2000; Bruhn and Haeussler, 2006) (Plate 15) or fault-bend fold (Frankforter and 

Waugaman, 2013; Plate 16), where the antithetic fault acts as a de facto roof thrust above 

an east-directed basement wedge.  

 The Kenai-Cannery Loop fault-fold system (F3) was extended 15 miles (24 km) to the north, 

yielding a maximum length of approximately 28 miles (48 km).  The increase in length is 

based on inferred continuity between an east-dipping (i.e., west-vergent) master fault that 

underlies both the Kenai-Cannery Loop anticline in the south and a monocline that was 

mapped in the seismic reflection data to the north (Plate 12). The monocline is interpreted 

in line p3890-10 (Plate 12), north of which there is no available reflection data. The overall 

geometry and structural style of the Kenai-Cannery Loop fault system is analogous to the 

Middle Ground Shoal–Granite Point system, but the net transport direction is to the west. 

Based on this relationship, we interpret the Middle Ground Shoal–Granite Point and Kenai-

Cannery Loop structures as defining an inward-vergent fault system, with the Site located in 

the intervening synclinal flat. This is shown in a conceptual cross section across upper 

Cook Inlet at the latitude of the Site (Plate 17), and is based on interpretation of the 

available seismic reflection profiles.  

 The length of the Beaver Creek anticline (F5) was reduced by approximately 4 miles (7 km), 

yielding a maximum length of approximately 7 miles (11 km). The length of this structure is 

constrained by industry lines ms-11 and ms-14 (Plate 12), which show no evidence of tilting 

along the projection of the fold axis. The lack of deformation thereby provides a maximum 

possible fault length, placing the limits of this structure beyond the extent of the structural 

mapping boundary (Plate 12). 

 Trading Bay and North Trading Bay anticlines are linked into a single seismic source (F22) 

based on their proximity, which yields a fault length of approximately 8 miles (14 km).  

 Beluga River and Lewis River anticlines are linked into a single seismic source (F13) based 

on suggestions in published literature (Haeussler and Saltus, 2011; Haeussler et al., 2000), 

which yields a fault length of approximately 22 miles (35 km).  
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 The West McArthur River anticline (F9) was extended slightly to the north based on its 

expression on industry seismic line 203-220 (there is no available reflection data north of 

this line). Despite the proximity and similarity in trends, we do not link this structure to the 

Trading Bay–North Trading Bay source (F22) based on arguments made by Haeussler and 

Saltus (2011).  

Depth to fault tip 

Blind faults that comprise sources F1 through F15, F21 and F22 by definition remain at some 

depth below the surface (Haeussler et al., 2000; Bruhn and Haeussler, 2006). Bruhn and 

Haeussler (2006) converted two-way travel time to depth in seismic reflection data to provide 

estimated fault tip depths for five structures: Middle Ground Shoal anticline (F7), McArthur River-

Redoubt Shoal anticline (F8), West McArthur River anticline (F9), North Cook Inlet anticline (F12), 

and Beluga River anticline (F13). Corresponding fault tip depths are 1.7 mi (2.7 km), 0.7 mi (1.1 

km), 1.3 mi (2.1 km), 2.1 mi (3.3 km), and 0.7 mi (1.1 km), respectively. We supplemented these 

values where we have coverage by the industry seismic data. Fault tip depths were calculated and 

updated for Kenai-Cannery Loop (F3), Swanson River (F4), Middle Ground Shoal–Granite Point 

(F7), McArthur River-Redoubt Shoal (F8), and West McArthur River fault sources (F9) (Table 3.2). 

Fault dip depth measurements were made in TWTT and converted to elevation using velocity-to-

depth curves from onshore deep seismic survey (Fugro Report No. 04.10140334-7) and the 

compilation digital elevation model described above. It is difficult to directly compare the velocity 

model used in this analysis to previous Cook Inlet seismic reflection studies (Haeussler et al., 

2000; Bruhn and Haeussler, 2006) because the authors of these studies do not explicitly state 

what values they used in their model. The only comparison comes from the Beluga anticline field, 

which lies beyond the northern boundary of the Structural Mapping Area. There, Haeussler et al. 

(2000) report fault tip-lines located “around 1.25 s TWT (1040 m).” This time-to-depth comparison 

indicates that, at least in that area, their velocity model for the upper kilometer is approximately 

1,664 m/sec. For comparison, for the upper 1 kilometer of crust within the Structural Mapping 

extent, the velocity models used in this study range from a minimum of 1,525 m/s to a maximum of 

2,377 m/s. The fault tip depths used in the seismic source model are calculated averages sampled 

from along the entire length of the structure, or where there is overlapping seismic reflection data.  

Given the lack of available data for the remaining structures, and for those that lie outside the 

structural extent boundary, a uniform fault-tip depth of one kilometer was assigned. This approach 

was applied to the following sources: F1, F2, F5, F6, F10-F15, F21, and F22 (Table 3.2).    

Fault dip 

To calculate dip values for the fault sources, measurements were made in milliseconds (TWTT) 

along the down-dip extent points, and were then depth-converted using the procedure described 

above. 
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Fault dip data for sources F1 through F15, F21, and F22 are predominantly based on published 

literature. For faults coring the Kenai-Cannery Loop anticline (F3), Swanson River anticline (F4), 

Middle Ground Shoal–Granite Point anticline (F7), McArthur River-Redoubt Shoal anticline (F8), 

and West McArthur River anticline (F9), industry seismic data were used to calculate 

representative dip values. A single seismic line was examined for the Kasilof anticline (F2) to help 

further constrain weighting of dip parameters.  

The dip range of these structures was determined using trigonometric relationships on the fault tip 

depths and on measurements of arbitrary down-dip points. The dips were calculated using each of 

the different velocity models, which yield a total of 9 dip values per fault. The calculated dip values 

for each structure were collated to provide average, minimum and maximum values. These values 

were used to determine the model parameters (Table 3.2). Additionally, the dip values were binned 

in increments of 5 degrees and a histogram was generated for the dip values for each structure. 

The histogram values were used to constrain the range of admissible dips as well as for the 

weighting scheme for the corresponding logic tree branch (Table 3.2). 

Bruhn and Haeussler (2006) used seismic reflection data to construct cross-sections and assess 

dip angles for the faults below the Middle Ground Shoal anticline (F7), McArthur River-Redoubt 

Shoal anticline (F8), West McArthur River anticline (F9), the North Cook Inlet anticline (F12), and 

Beluga River anticline (F13). The corresponding dip values were: 45-55°, 55-80°, 70-90°, 55-62°, 

and 55-60°, respectively. Where appropriate, these values were revised where industry data were 

available, but were used directly for characterizing sources that lacked industry data coverage. For 

these latter faults (sources F1, F2, F5, and F9 thru F15), we considered an equally weighted 

distribution of fault dips (the weighting is shown in parentheses) that included the following: 45° 

(0.3), 60° (0.4), and 75° (0.3). Koehler et al. (2012a) list a vertical dip for the Swanson River 

anticline (F4). This value is incorporated into the source model by weighting the corresponding 

logic tree branch in favor of steeper dip angles: 60° (0.3), 75° (0.3), and 90° (0.4) (Table 3.2). The 

same scheme was adopted the Sterling anticline (F21).   

Fault dip direction 

The Cook Inlet faults and folds have variable geometries and vergence directions (Haeussler et al., 

2000; Bruhn and Haeussler, 2006; Fugro-McClelland, 2012b; Phase 1 PSHA, Fugro Report No. 

04.10140094-6; Fugro, 2015b). Dip directions used in the fault model are based on: (1) cross-

sections from published scientific literature and unpublished technical reports (e.g., Haeussler et 

al., 2000; Bruhn and Haeussler, 2006), (2) fault dip directions observed directly in the industry 

seismic reflection data, and (3) indirect inference based on the overlying fold geometries and 

structural relations imaged in the industry seismic reflection data. 

Published cross-sections and available industry data indicate that a majority of the folds on the 

western side of upper Cook Inlet basin are underlain by southeast-dipping faults (i.e., the folds are 
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west vergent). These folds include the McArthur River-Redoubt Shoal (F8), West McArthur River 

(F9), Beluga River (F13), and Trading Bay–North Trading Bay (F22) (Plate 10). As described 

above, structural relations require that the primary fault-transport direction on this side of the basin 

is to the east, opposite to the direction of fold vergence. Thus, many, if not all, of these east-

dipping structures are antithetic structures, or backthrusts, that either root directly into the master 

ramp (e.g., the Middle Ground Shoal fault) or adjacent decollement that lies east of the ramp-flat 

transition (Frankforter and Waugaman, 2013; Plate 16). Thus, we assume that all of the faults on 

the west side of the basin, other than the one underlying the Middle Ground Shoal anticline, are 

southeast dipping. These structures include the Nicolai Creek anticline (F10), Trading Bay–North 

Trading Bay anticline (F22), Moquawkie anticline (F11), and Ivan River anticline (F14) (Plate 10 

and Table 3.2).    

Available industry data indicate that folds on the eastern side of upper Cook Inlet are underlain by 

faults that consistently dip to the southeast (e.g., Fugro-McClelland, 2012b). These folds include 

the Falls Creek-Ninilchik anticline (F1), Kasilof anticline (F2), Kenai-Cannery loop anticline (F3), 

Swanson River anticline (F4), and Beaver Creek anticline (F5). For sources where no subsurface 

data are available, we assign a southeast dip direction to match the structural trends of the 

surrounding folds. These latter sources are the West Fork anticline (F6) and Sterling anticline (F21) 

(Plate 10 and Table 3.2).       

Depth of seismogenic zone 

Seismic reflection and well data collected by the oil and gas industry show that several of the blind 

faults in upper Cook Inlet extend into the Mesozoic basement (i.e., they are so called “thick-

skinned” faults). There is no data that conclusively shows whether or not these faults penetrate the 

entire thickness of the seismogenic crust (~22 mi [35 km]) (Haeussler et al., 2000; Bruhn and 

Haeussler 2006). However, Flores and Doser (2005) provide a cross section through upper Cook 

Inlet showing relocated historical seismicity collected over a thirty-five-year period in the greater 

Anchorage area. The cross section is located very near the site and passes through all of the 

closest line sources. While there are no alignments of seismicity or obvious correlations between 

earthquakes and any individual mapped structure, a key observation is that the density of 

earthquakes is clearly greatest between depths of approximately 9 to 15 mi (15 to 25 km), and then 

abruptly decreases.  This depth ranges corresponds to the upper portion of an inferred serpentinite 

body (Saltus et al., 2001), which would provide a logical detachment surface, or decollment, for the 

Cook Inlet fault-folds. Given the lack of other compelling data to constrain the deeper structure, 

and the fact that these are basement-involved structures, we follow the scheme of Wong et al. 

(2008), and assign maximum fault-penetration depths of 9, 12 and 16 miles (15, 20 and 25 km, 

respectively).   

Slip rate 
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Haeussler et al. (2000) approximated slip rates for the Middle Ground Shoal, Granite Point and 

North Cook Inlet anticlines based on fold properties measured on cross-sections (e.g., structural 

relief, shortening amounts and fault dip) and with assumptions about the onset of deformation in 

the Cook Inlet basin. Approximate slip rates for the Middle Ground Shoal and Granite Point 

anticlines vary from 0.015 to 0.107 in/yr (0.39 to 2.72 mm/yr) depending on the age of onset of 

deformation (11.2 to 1.6 Ma); while slip rates on the North Cook Inlet anticline vary from 0.002 to 

0.011 in/yr (0.04 to 0.27 mm/yr) (Haeussler et al., 2000). Tighter folding observed along the Middle 

Ground Shoal anticline may reflect these higher slip rates; conversely, broader, less developed 

folding observed along the North Cook Inlet anticline may reflect lower slip rates.  

Following Wong et al. (2008), we consider a weighted (value shown in parentheses) slip rate 

distribution of 0.015 in/yr [0.39 mm/yr] (0.2), 0.032 in/yr [0.82 mm/yr] (0.6), and 0.107 in/yr [2.72 

mm/yr] (0.2), which assumes the onset of deformation along the Middle Ground Shoal and Granite 

Point anticlines (F7) began at 5.3 Ma (Haeussler et al., 2000).  Similarly along the North Cook Inlet 

anticline (F12) we consider a weighted (value shown in parentheses) slip rate distribution of 0.002 

in/yr [0.04 mm/yr] (0.2), 0.003 in/yr [0.08 mm/yr] (0.6), and 0.011 in/yr [0.27 mm/yr] (0.2), which 

also assumes that the onset of deformation began at 5.3 Ma (Haeussler et al., 2000).  

The remaining blind fault sources within the upper Cook Inlet fold belt (F1 through F6, F8 through 

F11, and F13 thru F15) have been interpreted in the published literature (Haeussler and Saltus, 

2011) as being less developed structures, similar to the North Cook Inlet anticline. Accordingly, a 

weighted slip rate distribution (value shown in parentheses) is assigned that is analogous to the 

North Cook Inlet anticline: 0.002 in/yr [0.04 mm/yr] (0.2), 0.003 in/yr [0.08 mm/yr] (0.6), and 0.011 

in/yr [0.27 mm/yr] (0.2) (Table 3.2).    

3.4.2 Castle Mountain-Lake Clark fault system 

Collectively, the Castle Mountain and Lake Clark faults define a somewhat arcuate, approximately 

280-mi-long (450-km-long) fault system that bounds the Cook Inlet basin on the north, and 

separates the Alaska and Aleutian ranges (Plates 3 and 11). The two faults are associated 

because they lie along strike of one another. However, based on results from multiple studies 

(discussed in more detail above and in the following subsections), their late Quaternary tectonic 

histories are quite different: Paleoseismic studies on the Castle Mountain fault show it has had at 

least four surface-rupturing earthquakes during the Holocene, while the Lake Clark fault has had 

none. For this reason, the possibility of a through-going rupture between these two faults is not 

considered in this study. The Lake Clark fault is included herein as a seismic source because it is 

listed in the Alaska QFF — it is included because of its along-strike continuity with the Castle 

Mountain fault. 
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3.4.2.1 Castle Mountain fault 

Based on published literature (Plafker et al., 1994a, 1994b; Lahr et al., 1980; Flores and Doser, 

2005) we divide the Castle Mountain fault (F16 to F18) into an eastern and western segment. 

Surface lengths for each segment were derived from mapped traces in the QFF (Koehler et al., 

2012a). 

Fault sources F16 to F18 (Plate 11) represent separate rupture scenarios of the Castle Mountain 

fault: a rupture of the full extent of the Castle Mountain fault (F16), a high slip-rate and a low slip-

rate scenario on the western Castle Mountain fault segment (F17), and a rupture scenario of the 

eastern Castle Mountain fault and Caribou fault extension (F18). The modeled geometry and 

sense of slip for the fault is steeply dipping (80° for all scenarios). 

 A paleoseismic study by Haeussler et al. (2000) indicates reverse motion on the fault, however 

focal mechanisms from historic earthquakes indicate predominantly right-lateral shear (Lahr et al., 

1986; Haeussler et al., 2002). Koehler et al. (2012b) present geomorphic evidence that 

demonstrates that the style of motion across the fault during the Holocene is contractional. While 

there may be a component of dextral motion, it is not detectable within the resolution of the lidar 

data or ground measurements (Koehler, personal communication).  Based on these recent 

observations, we model the Castle Mountain fault as a reverse fault. Including a strike-strike slip 

component would make a negligible difference to ground motions at the site and be slightly less 

conservative. Consequently, we model the sense of motion across the fault as being purely 

reverse (Table 3.3). We consider the depth of the seismogenic zone for this fault to be 12 mi (20 

km) based on published literature related to the 1984 M5.7 earthquake in Sutton, Alaska (Lahr et 

al., 1980). 

Estimates of fault slip rates along the Castle Mountain fault are based on published 

paleoseismologic and contemporary seismologic investigations (Fuchs, 1980; Willis et al., 2007; 

Wesson et al., 2007; Koehler and Reger, 2011; Matmon et al., 2006; Meriaux et al., 2009; 

Haeussler et al., 2000; Haeussler and Saltus, 2011; Wong et al., 2008). A mean slip rate of 0.02 

in/yr (0.5 mm/yr) was used for scenarios involving both the Eastern Castle Mountain fault and the 

entire Castle Mountain fault (sources F18 and F16, respectively). Source F17 is modeled using two 

equally weighted slip scenarios (0.11 in/yr [2.9 mm/yr] mean rate; 0.02 in/yr [0.5 mm/yr] mean rate) 

to reflect disagreement in the published literature over activity rates of the western segment of the 

Castle Mountain fault (Willis et al., 2007; Wesson et al., 2007; Koehler and Reger, 2011). 

3.4.2.2 Lake Clark fault 

The Lake Clark fault consists of two segments, F19 and F20 (Plate 11). Surface lengths for these 

segments were derived from their mapped traces in the QFF (Table 3.3) (Koehler et al., 2012a). 

The boundary between the eastern (F19) and western (F20) strand is in an area of apparent 

structural complexity approximately 25 mi (40 km) east of Lake Clark (Koehler et al., 2012a). 
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Surface lengths for the segmented Lake Clark fault sources (F19 and F20) were derived from 

mapped traces in the QFF (Table 3.3) (Koehler et al., 2012a).  

Although vertical offsets of 1,600 to 3,300 ft (490 to 100 m) within Tertiary formations are noted 

along the Lake Clark fault in the published literature (Plafker et al., 1975; Detterman et al., 1976), 

strike-slip motion is considered the dominant structural style based on the association with the 

Castle Mountain fault and the regional tectonic setting (Haeussler et al., 2000; Bruhn and 

Haeussler, 2006). It is unknown how or if this characterization of the fault might change given the 

more recent studies by Koehler et al. (2012b) that show the Castle Mountain fault as a 

predominantly reverse structure. To a certain extent this becomes irrelevant because there is a 

negligible difference to ground motions at the site if the Lake Clark fault is modeled as a 

predominantly reverse fault versus a predominantly strike-slip fault. Following Wong et al. (2008), 

we consider the following weighted (in parentheses) fault dips: 75° (0.5) and 90° (0.5). Only steep 

dips are considered in the model because of the straight map trace of the fault and the steep dips 

documented on the nearby Castle Mountain fault. The fault dip direction is modeled as northwest 

dipping. Additionally, we consider fault penetration depths of 9, 12, and 16 mi (15, 20, and 25 km) 

(Wong et al., 2008). 

Slip-rate measurements for the Lake Clark fault derived from offset Eocene intrusive units, range 

from 3 to 16 mi (5 to 26 km) of right lateral separation (Plafker et al., 1975; Haeussler and Saltus, 

2004). Plafker et al. (1975) estimated 3+0.6 mi (5+1 km) of offset of a 38.6 m.y. intrusive unit 

associated within the Talkeetna formation, resulting in an Eocene slip rate of 0.004 in/yr (0.1 

mm/yr). Later studies by Haeussler and Saltus (2004) estimated 16 mi (26 km) of offset of 

magnetic anomalies within a 34-38 m.y. intrusive unit, resulting in an Eocene slip rate of 0.03 in/yr 

(0.7 mm/yr). Following Wong et al. (2008) and based on the ambiguous evidence for Quaternary 

activity on the fault (Plafker et al., 1975; Schmoll and Yehle, 1987; Koehler and Reger, 2011) we 

consider the following weighted (in parentheses) slip rates: 0.0004 in/yr [0.01 mm/yr] (0.2), 0.004 

in/yr [0.1 mm/yr] (0.6), and 0.028 in/yr [0.7 mm/yr] (0.2). 
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Table 3.1: Subduction Zone Seismic Sources 

Study 

ID  
Name Faulting Type M distribution 

Dip 

(deg.) 

Dip 

direction 

Depth 

Range in 

mi (km) 

Activity Rate Weight b-value 
Magnitude 

Range (Mw) 
Citation 

S1a 
Kodiak Island 
Megathrust 

Thrust 
Maximum 
Moment 

6 NW 
12.5 - 25 
(20 - 40) 

1/650 

 (Annual, Poissonian) 
1 - 8.8 Wesson et al. (2007) 

S1b 
Kodiak Island 
Megathrust 

Thrust 
Truncated 

exponential 
6 NW 

12.5 - 25 
(20 - 40) 

slip rate = 0.880 mm/yr 
(0.0346 in/yr) 

1 0.689 7.0 - 8.0 Wesson et al. (2007) 

S2a 
Prince William 

Sound 
Megathrust 

Thrust 
Maximum 
Moment 

3.4 NW 
12.5 - 23.8 
(20 - 38) 

1/535 

 (Annual, Poissonian) 
0.67 

- 9.2 

Wesson et al. (2007), Carver 
and Plafker (2008) 

8.66e-6 

 (Annual, Time-
dependent) 

0.33 Appendix A 

S2b 
Prince William 

Sound 
Megathrust 

Thrust 
Truncated 

exponential 
3.4 NW 

12.5 - 23.8 
(20 - 38) 

slip rate = 0.880 mm/yr 
(0.0346 in/yr) 

1 0.689 7.0 - 8.0 Wesson et al. (2007) 

S3 
Yakutat 

Megathrust  
Thrust 

Truncated 
exponential 

0.27 N 
8.8 – 9.4 
(14 - 15) 

slip rate = 0.400 mm/yr 

(0.0157 in/yr) 
1 0.666 7.0 - 8.1 Wesson et al. (2007) 

MT Megathrust Strike Slip 
Truncated 

exponential 
0 - 3.1 (5) Gaussian-smoothed grid 1 0.816 5.0  7.0 Wesson et al. (2007) 

IS1 
Intraslab - 

Intermediate 
Normal 

Truncated 
exponential 

0 NW 
31 - 50  

(50 - 80)1 Gaussian-smoothed grid 1 0.858 5.0 - 8.0 Wesson et al. (2007) 

IS2 
Intraslab - 

Deep 
Normal 

Truncated 
exponential 

0 NW 
50 - 75  

(80 - 120)2 
Gaussian-smoothed grid 1 1.007 5.0 - 8.0 Wesson et al. (2007) 

     1Representative depth values used in PSHA per Wesson et al 2007 for Intraslab – Intermediate is 37.5 mi (60 km). 

     2Representative depth values used in PSHA per Wesson et al 2007 for Intraslab – Deep is 56.3 mi (90 km). 
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Table 3.2: Cook Inlet Basin Upper Plate Fault Sources 

Study 

ID  
Name 

Faulting 

Type 
M relation 

Magnitude 

Frequency 

distribution 

Dip 

(deg.) 
Weight 

Dip 

direction 

Depth max 

in mi (km) 
Weight  

Depth 

to fault 

tip in 

mi (km) 

Weight 

Slip Rate 

in in/yr 

(mm/yr) 

Weight 
Fault Length 

in mi (km) 

Maximum 

magnitude (Mw) 
Citations 

F1 
Falls Creek-Ninilchik 
anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 16.9 (27) 

6.7 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 
2012a;  FMMG, 2012b 

60 0.4 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 16.9 (27) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 16.9 (27) 

F2 Kasilof anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.2 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 5.6 (9) 

6.2 

Haeussler et al., 2000;  Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 
2012a;  FMMG, 2012b 

60 0.2 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 5.6 (9) 

75 0.6 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 5.6 (9) 

F3 
Kenai–Cannery loop 
anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.1 SE 9.4 (15) 
0.3 

1.875 
(3) 

1 

0.0016 
(0.04) 0.2 30 (48) 

7.1 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 
2012a;  FMMG, 2012b 

60 0.7 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 30 (48) 

75 0.2 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 30 (48) 

F4 
Swanson River 
anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

50 0.6 SE 9.4 (15) 
0.3 

0.438 
(0.7) 

1 

0.0016 
(0.04) 0.2 24.4 (39) 

6.9 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 
2012a; FMMG, 2012b 

65 0.3 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 24.4 (39) 

80 0.1 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 24.4 (39) 

F5 Beaver Creek anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 4.4 (7) 

6.0 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Wong et al., 

2008; Haeussler and Saltus, 2011;  
Koehler et al., 2012a 

60 0.4 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 4.4 (7) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 4.4 (7) 

F6 West Fork anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 6.9 (11) 

6.3 
Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 2012a 
60 0.4 SE 12.5 (20) 

0.4 
0.0031 
(0.08) 0.6 6.9 (11) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 6.9 (11) 

F7 
Middle Ground Shoal 
anticline + Granite 
Point anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

50 0.6 NW 9.4 (15) 
0.3 

0.875 
(1.4) 

1 

0.0154 
(0.39) 0.2 41.9 (67) 

7.2 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Wong et al., 

2008; Haeussler and Saltus, 2011;  
Koehler et al., 2012a 

60 0.2 NW 12.5 (20) 
0.4 

0.0323 
(0.82) 0.6 41.9 (67) 

70 0.2 NW 15.6 (25) 
0.3 

0.1071 
(2.72) 0.2 41.9 (67) 

F8 
McArthur River-
Redoubt Shoal 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment   

SE 
9.4 (15) 

0.3 1 (1.6) 1 
0.0016 
(0.04) 0.2 16.9 (27) 

6.7 
Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 
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Study 

ID  
Name 

Faulting 

Type 
M relation 

Magnitude 

Frequency 

distribution 

Dip 

(deg.) 
Weight 

Dip 

direction 

Depth max 

in mi (km) 
Weight  

Depth 

to fault 

tip in 

mi (km) 

Weight 

Slip Rate 

in in/yr 

(mm/yr) 

Weight 
Fault Length 

in mi (km) 

Maximum 

magnitude (Mw) 
Citations 

anticline 
60 0.3 SE 

12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 16.9 (27) 

Saltus, 2011;  Koehler et al., 2012a 

75 0.7 
SE 

15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 16.9 (27) 

F9 
West McArthur River 
anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.1 SE 9.4 (15) 
0.3 

0.938 
(1.5) 

1 

0.0016 
(0.04) 0.2 11.9 (19) 

6.6 
Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 2012a 
60 0.2 SE 12.5 (20) 

0.4 
0.0031 
(0.08) 0.6 11.9 (19) 

75 0.7 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 11.9 (19) 

F10 Nicolai Creek anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 4.4 (7) 

6.0 
Bruhn and Haeussler, 2006; 
Haeussler and Saltus, 2011;  

Koehler et al., 2012a 
60 0.4 SE 12.5 (20) 

0.4 
0.0031 
(0.08) 0.6 4.4 (7) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 4.4 (7) 

F11 Moquawkie anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 NW 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 7.5 (12) 

6.3 
Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 2012a 
60 0.4 NW 12.5 (20) 0.4 

0.0031 
(0.08) 

0.6 7.5 (12) 

75 0.3 NW 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 7.5 (12) 

F12 
North Cook Inlet 
anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 24.4 (39) 

6.9 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Wong et al., 

2008; Haeussler and Saltus, 2011;  
Koehler et al., 2012a 

60 0.4 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 24.4 (39) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 24.4 (39) 

F13 
Beluga River anticline 
+ Lewis River anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 21.9 (35) 

6.9 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Wong et al., 

2008; Haeussler and Saltus, 2011;  
Koehler et al., 2012a 

60 0.4 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 21.9 (35) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 21.9 (35) 

F14 Ivan River anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 NW 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 6.9 (11) 

6.3 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Wong et al., 

2008; Haeussler and Saltus, 2011;  
Koehler et al., 2012a 

60 0.4 NW 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 6.9 (11) 

75 0.3 NW 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 6.9 (11) 
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F15 Stump Lake anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 NW 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 4.4 (7) 

6.0 
Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 2012a 
60 0.4 NW 12.5 (20) 

0.4 
0.0031 
(0.08) 0.6 4.4 (7) 

75 0.3 NW 25 
0.3 

0.0106 
(0.27) 0.2 4.4 (7) 

F21 Sterling anticline Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

60 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 6.3 (10) 

6.2 

Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 2012; 
FCL, 2012 

75 0.3 SE 12.5 (20) 
0.4 

0.0031 
(0.08) 0.6 6.3 (10) 

90 0.4 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 6.3 (10) 

F22 
Trading Bay + North 
Trading Bay anticline 

Reverse 
WC94, M-L*, 
Reverse 

Maximum 
Moment 

45 0.3 SE 9.4 (15) 
0.3 

0.625 
(1) 

1 

0.0016 
(0.04) 0.2 8.8 (14) 

6.4 
Haeussler et al., 2000; Bruhn and 
Haeussler, 2006; Haeussler and 

Saltus, 2011;  Koehler et al., 2012 
60 0.4 SE 12.5 (20) 

0.4 
0.0031 
(0.08) 0.6 8.8 (14) 

75 0.3 SE 15.6 (25) 
0.3 

0.0106 
(0.27) 0.2 8.8 (14) 

* Due to uncertainty of structure depth and orientations, Wong et al. (2008) and Haeussler et al. (2000) use the WC94, M-L, Reverse (Rupture length-magnitude) relation to determine Mw characteristic.  
We repeat the usage of inferred earthquake moment magnitude (Mw) herein.  
 
 



Report No. 04.10140334-6        
                    
 
 

3-19 

Confidential 
LNG Facilities Probabilistic Seismic Hazard Analysis (PSHA) Report 

USAL-FG-GRHAZ-00-002015-001 Rev.0 
5-May-2016 

Table 3.3: Non-Cook Inlet Basin Upper Plate Fault Sources 

 

 

 

 

 

 

 

 

 

 

Study 

ID  
Name 

Faulting 

Type 
M relation 

Magnitude 

Frequency 

Distribution 

Dip 

(deg.) 
Weight 

Dip 

direction 

Depth max 

in mi (km) 
Weight 

Depth to 

fault tip 

in mi 

(km) 

Weight 

Slip Rate 

in in/yr 

(mm/yr) 

Weight 
Fault Length 

in mi (km) 

Maximum 

magnitude 

(Mw) 

Citation 

F19 Lake Clark fault east Strike-slip 
WC94, M-
L**, Strike-

slip 

Maximum 
Moment 

75 0.5 NW 9.4 (15) 0.3 

- 1 

0.0004 
(0.01) 

0.2 75 (120) 

7.5 

Plafker et al., 1975; Schmoll and 
Yehle, 1987; Haeussler and Saltus, 

2004; Wong et al., 2008; 
Haeussler and Saltus, 2011; 

Koehler and Reger, 2011; Koehler 
et al., 2012a 

90 0.5 NW 

12.5 (20) 0.4 
0.0039 
(0.1) 

0.6 75 (120) 

15.6 (25) 0.3 
0.0276 
(0.7) 

0.2 75 (120) 

F20 Lake Clark fault west Strike-slip 
WC94, M-
L**, Strike-

slip 

Maximum 
Moment 

75 0.5 NW 9.4 (15) 0.3 

- 1 

0.0004 
(0.01) 

0.2 80 (128) 

7.5 

Plafker et al., 1975; Schmoll and 
Yehle, 1987; Haeussler and Saltus, 

2004; Wong et al., 2008;  
Haeussler and Saltus, 2011; 

Koehler and Reger, 2011; Koehler 
et al., 2012a 

90 0.5 NW 

12.5 (20) 0.4 
0.0039 
(0.1) 

0.6 80 (128) 

15.6 (25) 0.3 
0.0276 
(0.7) 

0.2 80 (128) 

** Magnitude relationships:  (WC941, M-L, Reverse): Mmax=5.00+1.22*log(surface rupture length of reverse fault), or equivalent WC94 relation (M-A and M-W),  
(WC941, M-L, Strike-slip): Mmax=5.16+1.12*log(surface rupture length of strike-slip fault), or equivalent WC94 relation (M-A and M-W) 

 
1 WC94: Wells, D.L. and Coppersmith, K.J., 1994 

Study 

ID 
Name 

Faulting 

Type 
M relation 

Dip 

(deg.) 

Depth range 

in mi (km) 

Geometry 

Weight 

Slip Rate in 

in/yr (mm/yr) 

Mean Slip Rate in 

in/yr (mm/yr) 

Slip Rate 

Weight 

Slip Rate 

Distribution 

Type 

Length in 

mi  (km) 

Area in mi2 

(km2) 

Maximum 

magnitude 

(Mw) 

F16 
Castle 

Mountain – 
Entire fault 

Reverse 
WC94, M-

L**, 
Reverse 

80 NW 
0.0 - 12.5 

(0.0 - 20.0) 
1 0.0197 (0.5) 0.0197 (0.5) 1.0 

Uniform 

 

118.5 

(189.6) 
1506 (3856) 7.8 

F17 
Castle 

Mountain 
West fault  

Reverse 
WC94, M-

L**, 
Reverse  

80 NW 
0.0 - 12.5 

(0.0 - 20.0) 0.5 

0.0827 - 0.1417 
(2.1 - 3.6) 

0.1142 (2.9) 0.5 
Uniform 

 
38.4 (61.4) 490 (1253) 7.2 

0.0157 - 0.0236 
(0.4 - 0.6) 

0.0197 (0.5) 0.5 

F18 
Castle 

Mountain 
East fault 

Reverse 
WC94, M-

L**, 
Reverse  

80 NW 
0.0 - 12.5 

(0.0 to 20.0) 
0.5 0.0197 (0.5) 0.0197 (0.5) 1.0 none 80.4 (128.6) 1016 (2602) 7.6 
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3.4.3 Excluded Faults 

Numerous faults are presented in the neotectonics maps of Alaska (Plafker et al., 1994) that are 

not included in the discussion and study source model above.  These faults are generally not 

shown in the QFF (Koehler et al., 2012a).  These faults were excluded because of a lack of 

supporting information (e.g., activity levels, location, spatial persistence, and relation to seismic 

events) or because the reported activity of the fault was very low (<0.02 in/yr / <0.5 mm/yr) and the 

fault was far from the site.  

The Bruin Bay fault and the Border Ranges faults, two prominent crustal structures in the site 

vicinity, were excluded from this study because there is no evidence for Holocene faulting along 

either structure. The Border Range fault is considered a Tertiary normal fault; the Bruin Bay fault is 

a reverse fault whose age of last movement is not clear.  

Additional faults excluded for this study include: the Chugach-St. Elias fault, the Kodiak Shelf fault 

zone, the Hicks Creek fault, the Matanuska Glacier fault, the Kenai lineament, the Ragged 

Mountain fault, the Patton Bay and Hanning Bay faults, and the Hinchinbrook Island, Hawkins 

Island, and Cordova mainland faults. The Salamatof Road fault was not included in the source 

model because it is interpreted as a non-seismogenic fault. This conclusion is based on lateral 

continuity of seismic reflections across the mapped trace of this structure, as imaged during the 

onshore geophysics campaign of the AKLNG project (Fugro, 2015e). 

The Denali fault is not included as a seismic source for this study. To confirm the earlier result, a 

sensitivity analysis was performed to evaluate the Denali fault contribution to the hazard and the 

response spectra at the project site.  The analysis is presented in Appendix B and confirms that 

exclusion of Denali fault from the seismic source model is supported because it does not affect the 

estimated ground motion hazard at the project site.  

3.5 Upper Crustal Areal Source 

In addition to the upper crustal seismic sources described above, upper crustal areal seismicity in 
the study region is included in the seismic source model. Areal seismicity captures seismic events 
that are not attributable to a known structure. In the study region, the shallow dip of the subducting 
Pacific slab and uncertainty in computed hypocentral depths, make it unfeasible to separate upper 
crustal sources from megathrust interface sources. Consequently, shallow slab seismicity (i.e., 
earthquakes with focal depths of 0 to 31 mi [0 to 50 km]) is modeled using the USGS slab 
seismicity model for shallow earthquakes that are not associated with the megathrust interface 
(Wesson et al., 2007). 
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3.6 Earthquake Recurrence and Activity Rates 

3.6.1 Introduction 

Two different earthquake recurrence models were used to characterize the various shallow crustal, 
intermediate, and deep gridded sources as well as the fault sources in the seismotectonic model, 
including:   

 The activities of the shallow, intermediate, and intraplate gridded seismicity not associated 
with the Aleutian-Alaskan megathrust were modeled per the gridded seismicity model of 
Wesson et al. (2007) described in Section 3.5.2 below. 

 The activity of the fault sources was modeled by means of the fault slip rate in conjunction 
with the pure maximum moment magnitude model.  This model assumes that all slip 
produces only the maximum magnitude.  Smaller earthquakes are captured by the gridded 
seismicity model of Wesson et al. (2007). 

The subsequent sections discuss the historical seismicity catalog used to develop the source 
parameters and the methodology employed to derive those parameters for the different source 
types. 

3.6.2 Seismicity Catalog and Grid Source Models 

A single upper crustal areal source (Zone A1 on Plate 18) covering the study region was utilized to 

represent shallow crustal seismicity (≤ 31 mi depth [≤ 50 km]) that is not related to either the 

megathrust or a known upper crustal structure. A1 is defined as  a subset of the USGS smoothed 

seismicity grid model (Wesson et al., 2007), which is appropriate for non-megathrust seismicity that 

occurs between 0 and 31 mi (50 km) depth (Plate 18), latitudes 54.5N and 64N, and longitudes of 

157W and 141W. Rates of seismicity in A1 are contained in the gridded seismicity model of 

Wesson et al. (2007) and the b-value in their Table 3. Gridded incremental values of occurrence of 

M 6.0 per 100 square kilometers per year in the study region range from interval lows of 0.030e-4 

to 0.100e-4, to interval highs of 0.300e-4 to 1.000e-4. 

To generate their grid source models, Wesson et al. (2007) utilized updated estimates of smoothed 

seismicity derived from the following combined catalogs: (1) Engdahl and Villaseñor’s International 

Association for Seismology and Physics of the Earth’s Interior (IASPEI) project, (2) Stover and 

Coffman’s Seismicity of the United States, (3) the US Geological Survey Preliminary Determination 

of Epicenters (PDE), (4) the International Seismological Centre (ISC), and (5) the Alaska 

Earthquake Information Center (AEIC). Source catalogs spanning 1898 through 2004 were ranked 

subjectively to derive preferred focal coordinates and moment magnitudes for each event. Where 

moment magnitudes were listed, those values were used.  Other magnitudes were converted to 

moment magnitude using published relations (Utsu, 2002; Sipkin, 2003). 
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Wesson et al. (2007) declustered the combined catalog using the Gardner and Knopoff (1974) 

algorithm as described in Wesson et al. (1999a; 1999b) and Frankel et al. (1996; 2002). 

Published aftershock studies are available for 12 of the largest mainshocks in the combined 

catalog, which are listed below. For the following earthquakes and intervals, Wesson et al. (2007) 

removed aftershocks on the basis of the published studies rather than using Gardner and 

Knopoff’s (1974) time-distance windows: 

 1949 0822 Queen Charlotte (M 8.1), 1,000 days; 

 1957 0309 Great Aleutian (M 8.6), 1,500 days; 

 1958 0710 Fairweather (M 7.7), 500 days; 

 1964 0328 Great Alaskan (M 9.2), 1,500 days; 

 1965 0204 Rat Islands (M 8.7), 1,300 days; 

 1972 0730 Sitka (M 7.6), 500 days; 

 1979 0228 St. Elias (M 7.5), 600 days; 

 1986 0507 Andreanof Island (M 8.0), 1,000 days; 

 1987 1130 Gulf of Alaska (M 7.9), 750 days; 

 1988 0306 Gulf of Alaska (M 7.8), 750 days; and 

 2002 1103 Denali fault (M 7.9), 500 days. 

Declustering reduced the 1898 to 2004 combined catalog from approximately 21,000 magnitude ≥ 

4.0 records to approximately 7,500 mainshocks. Overall completeness levels were determined as: 

 ≥ magnitude 4.5 since 1964; 

 ≥ magnitude 6.0 since 1932; and 

 ≥ magnitude 6.9 since 1898. 

Wesson et al. (2007) model the smoothed seismicity with an assumed exponential magnitude-

frequency distribution: 

log10N = a – b M,             (3-1) 

where 

 N = the number of earthquakes per year in a magnitude interval, 

 M = moment magnitude, and  
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a and b = parameters, determined using Weichert’s (1980) method for estimating a and  b 

values in catalogs with variable completeness levels. 

Earthquakes not associated with the megathrust were considered in three groups: 

 depth 0-31 mi (0-50 km) not associated with megathrust; 

 depth  >31-50 mi (50-80 km); and  

 depth  >50-75 mi (80-120 km).  

Wesson et al. (2007) described the grid activity rate calculations as follows: “Earthquake activity 

rates were calculated in each cell of a 0.1º-long × 0.1º-lat grid and smoothed using a two-

dimensional Gaussian function with correlation distance g (Frankel, 1995): b = 0.816 and g = 75 

km for earthquakes with depth ≥ 31 mi / 50 km [sic] not associated with the megathrust, b = 0.858 

and g = 31 mi / 50 km for earthquakes with depth > 31 mi / 50 km and ≥ 50 mi / 80 km, and b = 

1.007 and g = 31 mi / 50 km for earthquakes with depth > 50 mi / 80 km and ≥ 75 mi / 120 km.” 

Within the context of Wesson et al. (2007), it appears that the statement “b = 0.816 and g = 75 km 

for earthquakes with depth ≥ 31 mi / 50 km not associated with the megathrust” is a misprint that 

should properly read “b = 0.816 and g = 47 mi / 75 km for earthquakes with depth ≤ 31 mi / 50 km 

not associated with the megathrust.” If a revision or correction to Wesson et al. (2007) exists, it has 

not been found. This information is noted here for sake of clarity, but it ultimately does not affect 

the study region model usage of the gridded seismicity model, as it is the end model of Wesson et 

al. (2007) that was utilized herein; Fugro has not recreated the model based on the parameters 

published above. 
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4.0 PSHA METHODOLOGY 

4.1 PSHA Framework 

The methodology for Probabilistic Seismic Hazard Analysis (PSHA) is illustrated schematically on 

Plate 19 and includes the following components: 

1. Characterization of the seismic sources within a specified radius (124 miles / 200 km for the 

current report) around the site.  This leads to the development of a seismotectonic model 

for use in subsequent PSHA evaluations.  The characterization includes: 

a. Source geometry and location; 

b. Source type (e.g. shallow crustal, subduction, etc.) and style of faulting (e.g., normal, 

strike-slip, reverse, etc.); 

c. Magnitude potential (i.e., range of earthquake sizes possible on each source) and 

magnitude distribution (i.e., typically characterized using a magnitude probability density 

function); 

2. Earthquake magnitude recurrence: this is a characterization of the annual rate at which 

earthquakes of a specified magnitude or greater occur in each source.  Depending on the 

source type, the magnitude recurrence is estimated based on: (i) the long term slip rate 

(e.g., for planar fault sources) or (ii) regression on the historic seismicity (e.g., for aerial 

sources).   

3. Characterization of ground motion attenuation in each source based on the geologic 

environment and source types:  This is described by a Ground Motion Prediction Equation, 

or GMPE (a.k.a “attenuation relationship” or “attenuation model”).   

4. Performing PSHA using as input the seismotectonic model developed in the previous step 

in combination with the GMPEs selected for the specific environment, to estimate the 

ground motion hazard at the site.  This is expressed in terms of the annual frequency of 

exceeding a given spectral acceleration at the project site (i.e., annual hazard curves).  This 

information can also be shown in the form of uniform hazard spectra (UHS) which 

correspond to spectral acceleration having the same probability of exceedance across all 

structural periods.  The UHS are typically used by different design codes to define the 

design spectra.  

5. Deaggregation of seismic hazard in terms of magnitude, distance, number of standard 

deviations, seismic source, etc. to compute the relative contribution of different earthquake 

scenarios to the hazard at the site.  
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4.1.1 PSHA Calculations 

Computation of the seismic hazard (Step 4 described above) involves the combination of 

uncertainties in earthquake size, location, frequency, and resulting ground motions.  The estimated 

annual rate at which the ground motion, A, will exceed a particular value, a, is computed by 

(Cornell, 1968): 

   


drdmrfmfrmaAPMNaA RM

Nsource

i

  )( )( ],[)(][
1

min          (4-1) 

where Nsource is the total number of fault and areal sources, N(Mmin) is the annual rate of 

earthquakes with magnitude greater than or equal to Mmin, ],[ rmaAP 
 
is the probability of the 

ground motion, A, exceeding the threshold value, a, given the earthquake magnitude and distance 

from the fault, and fM(m) and fR(r) are probability density functions describing the variability in 

magnitude and distance.  

The computation of this integral is carried out numerically.  By assuming that earthquake 

occurrence can be modeled as a Poisson process, the probability of exceedance in a specified 

exposure period (typically corresponding to the useful life of a project) may be estimated as follows 

(Yegian, 1979): 

P A a t e a t[ , ] [ ( ) ]   1 
                (4-2) 

where P[A>a,t] is the conditional probability of the spectral acceleration (A) exceeding a specified 

acceleration (a) during a time interval (t) given that an earthquake will occur, and λ (a) is the mean 

annual rate of exceedance of the specified acceleration level.   

4.2 Treatment of Uncertainty 

When performing PSHA, there exists uncertainty with regards to the seismic source 

characterization (earthquake size, type, and distribution in space in time) as well as ground motion 

amplitude at the project site resulting from a given earthquake scenario.  This uncertainty is in part 

due to inherent randomness in the natural process (aleatory variability) and in part due to 

uncertainty in the modeling of the process (epistemic uncertainty). 

Aleatory variability is accounted for in the probability density function (PDF) of continuous random 

variables such as spectral acceleration given a magnitude and distance, or earthquake magnitude 

given a rupture dimension.   

Epistemic uncertainty is accounted for through a logic tree approach.  This approach is used to 

take into consideration uncertainty with respect to parameters that are used in the seismic hazard 

analyses.  Such parameters may be the maximum magnitude on a fault, the long-term slip rate, the 

median ground motion given an earthquake scenario, and the magnitude probability density 
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function.  The following list describes the parameters for which epistemic uncertainty is described 

in the logic tree (a generic illustration of which is given in Plate 20):  

 Fault segmentation.  Multi-segment rupture was considered along the Castle Mountain 

Fault (Table 3.3). 

 Dip angle of the planar fault sources. Up to three different dip angles were considered for 

the planar fault sources. These were weighted according to the relative confidence in the 

estimates (Tables 3.2 and 3.3). 

 Depth of the planar fault sources. Three different seismogenic depths were considered for 

the planar fault sources. These were weighted according to the relative confidence in the 

estimates (Tables 3.2 and 3.3). 

 Magnitude recurrence. Up to two different magnitude recurrence models were used for the 

interface sources as discussed in Section 3.0. Example probability density functions (PDF) 

and cumulative probability density functions for the truncated exponential and maximum 

magnitude models is provided in Section 5.3. 

 Time Dependence. Both time-dependent and time-independent models with suitable 

weights were used for the interface source S2. 

 Slip rate on the planar fault sources. Three different slip rates were considered for the 

planar fault sources. These were weighted according to the relative confidence in the 

estimates (Tables 3.2 and 3.3). 

 Ground motion prediction equations (GMPEs). Four Next Generation Attenuation (NGA 

West 2) relationships (Bozorgnia et al., 2014), with equal weights, were used to model all 

shallow crustal sources (including shallow crustal background seismicity sources and 

planar fault sources). Three subduction relationships were used to model all subduction 

interface and intraslab sources. Within the subduction relationships, BC Hydro (BC Hydro, 

2012; Abrahamson et al., 2015) relationship was used with a weight of 0.5, other two 

relationships were used with a weight of 0.25 each. The aleatory variability (σ) has also 

been taken into account in the ground motion prediction equations. The GMPEs adopted 

for this study are described in Section 5.4. 

4.3 Implementation 

Probabilistic seismic hazard analyses were carried out using the computer program HAZ43 

(Abrahamson, 2013).  This program was developed by Dr. Abrahamson, and it has been validated 

using all test cases presented in the PSHA Validation Project performed by the Pacific Earthquake 

Engineering Research (PEER) Center’s Lifelines Program (Thomas et al., 2010). 
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The hazard calculation described by Equation 4-1 is carried by discretizing the distribution on 

earthquake magnitude, location, and shaking amplitude with the following assumptions: (1) The 

magnitude distribution per planar fault source is sampled at intervals of 0.01 magnitude units; (2) 

The variability in ground motion amplitude for a given earthquake scenario is truncated at ± 3 

standard deviations. 

4.4 Near Source and Directivity Effects 

Near-source effects for relatively large magnitude earthquakes are typically considered for 

distances from the fault of about 15 km or less.  These effects are usually referred to as forward, 

neutral, and backward directivity conditions.  In general, forward directivity is associated with the 

fault rupturing towards the site, and backward directivity conditions with the fault rupturing away 

from the site.  Near-source effects are accounted for in this study by using the recently developed 

Bayless and Somerville directivity model (in Spudich et al., 2013) as part of the NGA West 2 

project.  Bayless and Somerville present an improved version of the older Somerville et al. (1997) 

and Abrahamson (2000) directivity model, which retains that model's computational simplicity but 

updates the model with new data and a better functional form including rupture-length 

denormalization, a modified dependence on site azimuth, use of azimuth tapers to obviate the 

need for an excluded zone, and extension of the algorithm to allow directivity calculations for 

complicated, noncontiguous rupture zones.  Additionally, the Bayless and Somerville model 

explicitly developed directivity models for fault-normal (FN) and fault-parallel (FP) components.  

The calculation of near-source effects is implemented probabilistically by randomizing the location 

of the earthquake hypocenter given a rupture area. 

The AKLNG project site is located close to two identified seismic fault sources, F3  Kenai – 

Cannery loop Anticline and F7  Middle Ground Shoal Anticline and Granite Point Anticline.  Hence, 

near-source effects were taken into consideration in the analyses. 
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5.0 SEISMIC HAZARD ANALYSES 

5.1 Project Location 

Probabilistic seismic hazard analyses (PSHA) were conducted for four representative onshore 

locations and four representative nearshore locations in order to capture spatial variability of the 

ground motions within the project area.  (Plate 21).  The geographical coordinates of the locations 

used for the seismic hazard analyses are tabulated in Table 5.1. The closest distance from the 

onshore site 4 and the nearshore site 1 to the seismic sources described in Section 3.0 are 

summarized in Table 5.2.  The 2002 Denali earthquake, which was included in a sensitivity study in 

Appendix B to confirm exclusion from the analyses, was at a distance of 144 miles (232 km) from 

Onshore Site 3. 

Table 5.1: Coordinates of Representative Locations 

Location Latitude (degrees) Longitude (degrees) 

Onshore Site 1 60.66486 -151.35769 

Onshore Site 2 60.65455 -151.34953 

Onshore Site 3 60.67554 -151.36764 

Onshore Site 4 60.66120 -151.36600 

Nearshore Site 1 60.65763 -151.38643 

Nearshore Site 2 60.66965 -151.38962 

Nearshore Site 3 60.66132 -151.37457 

Nearshore Site 4 60.64981 -151.37039 
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Table 5.2: Closest Distance to Seismic Sources 

Source 
Closest Distance in miles (km) 

Onshore Site 4 Nearshore Site 1 

F1  Falls Creek-Ninilchik Anticline 28.8 (46.1) 28.6 (45.8) 

F2  Kasilof Anticline 20.5 (32.8) 20.2 (32.3) 

F3  Kenai – Cannery loop Anticline 5.7 (9.1) 6.2 (9.9) 

F4  Swanson River Anticline 12.9 (20.6) 13.6 (21.7) 

F5  Beaver Creek Anticline 11.1 (17.7) 11.7 (18.7) 

F6  West Fork Anticline 16.9 (27.1) 17.4 (27.9) 

F7  Middle Ground Shoal Anticline and Granite 
Point Anticline 

4.4 (7.0) 3.8 (6.0) 

F8  McArthur River-Redoubt Shoal Anticline 9.6 (15.4) 9.1 (14.6) 

F9  West McArthur River Anticline 10.9 (17.4) 10.4 (16.7) 

F10 Nicolai Creek Anticline 22.6 (36.1) 22.8 (36.4) 

F11 Moquawkie Anticline 27.8 (44.4) 28.0 (44.8) 

F12 North Cook Inlet Anticline  13.4 (21.4) 13.9 (22.2) 

F13 Beluga River Anticline and Lewis River 
Anticline 

29.5 (47.2) 30.0 (48.0) 

F14 Ivan River Anticline 42.6 (68.1) 43.0 (68.8) 

F15 Stump Lake Anticline 45.9 (73.4) 46.4 (74.3) 

F16 Castle Mountain – Entire Fault 46.4 (74.2) 46.8 (74.9) 

F17 Castle Mountain West Fault 46.4 (74.3) 46.8 (74.9) 

F18 Castle Mountain East Fault 92.9 (148.6) 93.5 (149.6) 

F19 Lake Clark Fault East 37.3 (59.6) 37.2 (59.5) 

F20 Lake Clark Fault West 56.6 (90.6) 55.9 (89.5) 

F21 Sterling Anticline 14.3 (22.8) 14.8 (23.6) 

F22 Trading Bay and North Trading Bay Anticline 12.8 (20.4) 12.8 (20.4) 

S1 Interface Subduction - Kodiak Island 124.4 (199.0) 124.0 (198.4) 

S2 Interface Subduction - Price William Sound 43.9 (70.2) 44.3 (70.9) 

S3  Interface Subduction - Yakutat 214.5 (343.2) 215.3 (344.4) 

MT Megathrust Gridded Seismicity 28.6 (45.8) 29.3 (46.8) 

IS60 Intraslab Subduction, depth 37 mi (60 km) 37.3 (60.0)  37.3 (60.0)  

IS120 Intraslab Subduction, depth 74 mi (120 km) 55.9 (90.0)  55.9 (90.0) 
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5.2 Site Classification 

Dynamic subsurface conditions were characterized by means of: (1) 8 Phase 1 onshore borings 

which included downhole seismic shear wave velocity logging and presented in the Geotechnical 

Data report (Fugro Report No. 04.10140094-8), (2) 18 Phase 2 onshore borings which included 

downhole seismic shear wave velocity logging and presented in the Onshore Geotechnical Data 

report (Fugro Report No. 04.10140334-8), (3) 9 nearshore borings which included downhole 

seismic shear wave velocity logging performed during Phase 2 and presented in the Marine 

Geotechnical Data report (Fugro Report No. 04.10140334-9), and (4) Interferometric Multichannel 

Analysis of Surface Waves (IMASW) data presented in the Onshore Geophysical Survey Report 

(Fugro Report No. 04.10140334-7).  In addition, a number of Standard Penetration Test (SPT) 

based empirical correlations were used to estimate either Gmax or Vs for all 87 onshore and 25 

nearshore borings performed at the project site. The empirical correlations between SPT blow 

counts and shear wave velocity (or small strain shear modulus) for sands and clays that were 

considered are summarized in Table 5.3. Based on the available data (field logs and boring logs), 

the subsurface conditions generally consist of sandy gravel to gravelly sand in the top 

approximately 26 ft depth, underlain by poorly graded sand to a depth of approximately 65 ft. 

Interlayered sandy/clayey deposits were typically found at deeper depths (>65 ft). A detailed 

description of subsurface conditions in the onshore areas is provided in the Onshore and the 

Marine Geotechnical Data Reports for the project (Fugro Reports No. 04.10140334-8 and No. 

04.10140334-9, respectively). Plate 22 presents a summary of measured shear wave velocity data 

obtained from the 26 downhole seismic shear wave velocity tests in the onshore project area. 

Estimated time-averaged shear wave velocities (Vs30), at the ground surface, for the twenty-six 

downhole measurements are in the range of  685 ft/s (209 m/s) to 1181 ft/s (360 m/s), with an 

average of approximately 912 ft/s (278 m/s). Similarly, Plate 23 presents a summary of measured 

shear wave velocity data obtained from the 9 downhole seismic shear wave velocity tests in the 

nearshore project area. Estimated time-averaged shear wave velocities (Vs30), at the ground 

surface, for the nine downhole measurements are in the range of  817 ft/s (249 m/s) to 941 ft/s 

(287 m/s), with an average of approximately 876 ft/s (267 m/s). Based on this, the seismic hazard 

analyses were performed, for the onshore as well as nearshore locations ,at the ground surface 

with a time-weighted average shear wave velocity of 885 ft/s (270 m/s) corresponding to site class 

D per ASCE 7-05. Plate 24 presents a summary of all measured shear wave velocity data obtained 

from the downhole seismic shear wave velocity tests in the onshore and the nearshore project area 

during Phases 1 and 2. 
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Table 5.3: Empirical Correlations for Shear Wave Velocity 

Reference 
Soil 

Type 
Correlated Parameters Correlations 

Brandenburg et al. 
(2010) 

All 
SPT blow count (N60) 

Effective vertical stress, σ'v 

ln(Vs) = βo+β1ln(N60)+β2ln(σ'v )+η+ε 

where Vs – Shear wave velocity in m/s 

           βo ,β1 ,β2 , η ,and ε – Regression parameters 
depend on soil type 

Wair et al. (2012) All 
SPT blow count (N60) 

Effective vertical stress, σ'v 

Vs = a*N60
b*σ'vc*d 

where Vs – Shear wave velocity in m/s 

           a ,b ,and c– Regression parameters depend 
on soil type 

d – Age Scaling Factor 

5.3 Magnitude Probability Density Functions 

The recurrence of earthquakes in a region is modeled by means of magnitude recurrence 

relationships, N(M).  Those relationships describe the annual rate at which earthquakes with 

magnitudes equal to or greater than M occur on a given source or region and may be estimated 

through the following equation: 

 

(5-1) 

 

As suggested by this equation, the following information is required for each areal or fault source to 

develop its magnitude recurrence relationship: 

 The magnitude probability density function, f(m), which describes the relative number of 

large, moderate and small magnitude earthquakes occurring on the source.   

 The activity rate, N(Mmin) which describes the annual number of earthquakes on a source 

larger than a minimum magnitude of engineering interest, Mmin. 

Different magnitude distributions are typically used for areal sources (background gridded 

seismicity sources) compared to fault sources which have been observed to generate earthquakes 

in a preferred magnitude range. As discussed in Section 3.0 (Tables 3.1 to 3.3), two different 

magnitude probability density functions (PDF) were used to model the relative rate of occurrence of 

different magnitudes of the seismogenic sources: (a) the truncated exponential (Gutenberg-

Richter) model is used for shallow crustal and subduction background gridded seismicity sources 

(MT, IS1, and IS2) as well as interface subduction sources S1b, S2b, and S3, and (b) the 

maximum magnitude (pure characteristic) model is used for planar fault sources as well as 
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interface subduction sources S1a and S2a that are capable of generating megathrust events  

(M>8.5).   

Example probability density functions (PDF) and cumulative probability density functions for the 

truncated exponential and maximum magnitude (pure characteristic) models are shown on Plates 

25 and 26, respectively. For this comparison, a characteristic magnitude of 7.75 was assumed.  

This magnitude was also used as the maximum magnitude in the truncated exponential model.  

The characteristic model was assumed to have a truncated normal distribution with maximum and 

minimum magnitudes of +/-0.24 units about the characteristic magnitude and a standard deviation 

of 0.12.  This distribution represents the aleatory variability in the magnitude potential of any given 

source.  The pure characteristic (maximum magnitude) model has the highest probability density 

around the characteristic magnitude while zero density is assigned to smaller magnitudes.  The 

differences in the probability density between the two models translate to significantly different 

recurrence relationships.  Plate 26 shows the annual recurrence predicted using the two models in 

combination with a slip rate of 0.039 in/yr (1.0 mm/year), a fault area of 38564 mi2 (100,000 km2) 

and a b-value of 1.0.  The truncated exponential model estimates the occurrence of earthquakes 

for a range of magnitudes, with the smaller magnitude earthquakes occurring more frequently 

compared to the larger ones.  Conversely, the pure characteristic (maximum magnitude) model 

which estimates larger frequency of occurrence for the characteristic magnitude earthquake. It is 

important to note that an areal source overlaps the planar fault source.  In this way, the majority of 

characteristic earthquakes are concentrated along the fault plane while smaller and moderate 

magnitude earthquakes are distributed evenly over a broader zone.    

5.4 Horizontal Ground Motion Prediction Equations 

The attenuation of seismic waves from a seismogenic source to the site was modeled using 

horizontal Ground Motion Prediction Equations (GMPEs). These empirical relationships should 

model the type of rupture mechanism as well as the regional geology to properly estimate site-

specific strong ground motion.   

The project area lies in an active plate margin region, with shallow crustal as well as interface and 

intraslab subduction sources. Accordingly, shallow crustal as well as interface and intraslab 

relationships were selected for the project. These relationships include the recently developed Next 

Generation Attenuation (NGA West 2) relationships for the shallow crustal sources (Bozorgnia et 

al., 2014), and relationships for interface and deep intraslab subduction sources sources based on 

interface/megathrust and intraslab events worldwide.  Improvements in the NGA West 2 GMPEs 

compared to the NGA West 1 GMPEs (Power et al., 2008) include among others: (a) an expanded 

earthquake database, especially in large distance and small magnitude range; (b) increase in total 

number of earthquakes (a total of 161 additional moderate-to-large world-wide earthquakes and 

266 small-to-moderate magnitude California earthquakes were added to the NGA West 2 

earthquake database); (c) improvements to the “small magnitude” scaling of the GMPEs; (d) 
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improvements to the “large distance” scaling of the GMPEs; and (e) improvements in the quality of 

site data and shear wave velocity classification. The relationships used for the project and their 

corresponding weights are presented in Table 5.4. Idriss (2014) was not adopted since it is not 

applicable to Vs30 values less than 1476 ft/s (450 m/s). The remaining four NGA West 2 

relationships were weighted equally for the analyses, as there was no justification to provide 

unequal weighting. Within the subduction relationships, BC Hydro (2012) with the adjustments 

recommended by Abrahamson et al. (2015) is the preferred model because it is based on a much 

larger data set that includes all of the data used by Zhao et al. (2006), and uses the Atkinson and 

Macias (2009) simulation result to constrain the break in the magnitude scaling at high magnitudes. 

Hence, a higher weight was assigned to that relationship. The BC Hydro (2012) relationship used 

in this study has included the adjustments recommended by Abrahamson et al. (2015) for the 

magnitude scaling parameter ∆C1 for the larger magnitude interface and intraslab events. 

Table 5.4: Selected Ground Motion Prediction Equations 

Sources GMPE Weight 

Shallow Crustal Sources 

(Faults F1 through F20 
and Shallow Crustal 

Background Seismicity) 

Abrahamson et al. (2014) 0.25 

Boore et al. (2014) 0.25 

Campbell and Bozorgnia 
(2014) 

0.25 

Chiou and Youngs (2014) 0.25 

Interface - Megathrust 

(Interface Segments S1, 
S2, S3 and MT 

Megathrust Gridded 
Seismicity) 

BC Hydro (2012) with the 
adjustments 

recommended by 
Abrahamson et al. (2015) 

0.50 

Zhao et al (2006) 0.25 

Atkinson and Macias 
(2009) 

0.25 

Intraslab Subduction 
Sources 

(IS60 and IS120) 

BC Hydro (2012) with the 
adjustments 

recommended by 
Abrahamson et al. (2015) 

0.50 

Zhao et al (2006) 0.25 

Atkinson and Boore 
(2003) 

0.25 

5.5 Definition of Design Level Events 

Per the input from EMALL, National Fire Protection Agency (NFPA) 59A 2006 and ASCE 7-05 

have been adopted for the ground motion development for the project. NFPA-59A 2006 has 

adopted the provisions of ASCE 7-05. According to the requirements of the National Fire 

Protection Agency (NFPA) 59A 2006 ground motions are developed for two levels:  
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 The OBE (Operating Basis Earthquake) defined as mean hazard ground motion with a 10 

percent probability of exceedance within a 50-year period (475 year return period), and 

 The Safe Shutdown Earthquake defined as the “Maximum Considered Earthquake” (MCE) 

ground motion per ASCE 7-05. 

Evaluating the MCE involves a combination of both probabilistic and deterministic analyses.  The 

MCE corresponds to the lesser of: (a) ground motions that have a 2 percent probability of 

exceedance during a 50-year design life (i.e., return period of 2,475 years), Section 21.2.1 of 

ASCE 7-05); and (b) 150% of the largest median 5 percent damped spectral response acceleration 

at that period for characteristic earthquakes on all known active faults within the region (Section 

21.2.2 of ASCE 7-05).   

Per ASCE 7-05 requirements, ground motions are developed for two levels: (a) Maximum 

Considered Earthquake (MCE), and (b) Design Earthquake (abbreviated for this project as DE to 

distinguish from other shaking levels) is defined as 2/3 of MCE, along with some other checks 

pertaining to spectral shape.  

In addition, spectra have also been developed per the requirements of NFPA 59A 2013 and ASCE 

7-10, per the request of EMALL. Those results are presented in Appendix C. 

5.6 Extending the Design Spectra to Long Periods 

The NGA West 2 GMPEs have been developed for structural periods up to 10 seconds. However, 

subduction  GMPEs have been defined to periods of up to 3 , 5, and 10 seconds for Atkinson and 

Boore (2003), Zhao et al (2006), and BC Hydro (2012) with Abrahamson et al. (2015) adjustments 

GMPEs, respectively. Because of the limitations in applicable periods for Atkinson and Boore 

(2003) and Zhao et al (2006) subduction models, the UHS could only be defined up to 3 seconds 

using the full PSHA logic tree. A well-established methodology to extend a design spectrum to 

longer periods is not available in the literature. However, there appears to be consensus among 

the scientific community (e.g., NEHRP, 2003) that in the absence of data at long periods design 

response spectra (not GMPEs) can be extended based on a constant spectral velocity assumption 

for the intermediate periods and a constant spectral displacement assumption for long periods. For 

design purposes the “corner period”, marking the transition between constant spectral velocity and 

constant spectral displacement is a function of the earthquake magnitude and has been tabulated 

by NEHRP (2003). For this study, the corner period was estimated based on magnitudes of the 

contributing sources to the hazard at long periods. Based on deaggregation results, majority of 

long period hazard stems from large magnitude (M > 7.5) earthquakes. The long-period transition 

period TL for the project area determined according to ASCE 7-05 is 16 seconds. Accordingly, a 

corner period greater than 10 s was selected for that region. The UHS were extended from 3 to 10 

s assuming constant structural velocity. 
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5.7 Probabilistic Seismic Hazard Analyses Results 

Results from the probabilistic seismic hazard analyses are presented in terms of horizontal design 

response spectra at the ground surface with a time-weighted average shear wave velocity (Vs30) 

value of 885 ft/s (270 m/s) for the planned LNG facility locations (i.e., onshore sites 1 to 4 and 

nearshore sites 1 to 4). Plates 27 and 28 present the estimated 5-percent damped horizontal 

response spectra for onshore sites 1 to 4 for 475 and 2475 year return period events, respectively. 

As shown on the plates, ground motions results are generally similar for those four locations, with 

differences in spectral values less than 1% for the 475-year event and 2% for the 2475-year 

events. Similar results are observed for the four nearshore sites in Plates 29 and 30. Hence, 

onshore site 4 and nearshore site 1 (Plate 21) are selected as representative locations for the 

development of design spectra for the onshore and the nearshore LNG facilities, respectively. 

Plate 31 compares the estimated 5-percent damped horizontal response spectra for onshore site 4 

to and nearshore site 1 for 475 and 2475 year return period events. Ground motions results are 

generally similar for the onshore and the nearshore locations, with differences in spectral values 

less than 1% for the 475-year event and up to 2% for the 2475-year events. Plate 32 compares the 

estimated 5-percent damped horizontal response spectra for onshore site 4 to and the onshore 

Phase 1 PSHA results (Fugro Report No. 04.10140094-6) for 475 and 2475 year return period 

events. The onshore horizontal response spectra from the current study are similar to the Phase 1 

onshore PSHA results (Fugro Report No. 04.10140094-6), being lower approximately 2% at PGA 

and 0% at structural period T = 3 secs for the 475-year event and lower approximately 3% at PGA 

and higher by 2% at structural period T = 3 secs for the 2475-year events. Those small differences 

could be attributed to the refined seismotectonic model and the updated BC Hydro (2012) with the 

adjustments recommended by Abrahamson et al. (2015) used in the current study. 

5.7.1 Seismic Hazard Curves 

Plates 33 and 34 present the total mean hazard curves for structural periods ranging from PGA to 

3 seconds corresponding to onshore site 4, and nearshore site 1.  These hazard curves represent 

the total mean hazard from combining all seismic sources and GMPEs.   

5.7.2 Horizontal Uniform Hazard Response Spectra (UHRS) 

Plates 35 and 36 present the mean horizontal uniform hazard acceleration response spectra 

(UHRS) for return periods of 475 and 2475-year return period spectra for onshore site 4 and 

nearshore site 1, respectively, with no directivity effects.  These UHRS were computed based on 

the total mean hazard curves presented on the total mean hazard curves similar to Plates 33 and 

34.  As shown on the figures, ground motions results are very similar for those these locations.  

Plates 37 and 38 present the 475 and 2475-year return period spectra (5% damping) for the 

onshore and the nearshore locations, incorporating near-source directivity effects. The results are 
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shown for no directivity (ND) and fault normal (FN) and fault parallel (FP) directivity conditions. In 

general, near source effects are associated with structural periods longer than 0.6 seconds. For 

both the onshore and nearshore sites, in the period range of 0.5 to 1.5 s, the FN spectrum is 

identical to the ND for both the 475-year event and the 2475-year return period event. At longer 

structural periods (i.e., T > 1.5 sec), the FN spectrum is approximately 1% to 2% higher than the 

ND spectrum for the 475-year event. For the 2475-year return period event, the FN spectrum is 

approximately 3% to 6% higher than the ND spectrum at longer structural periods (i.e., T > 1.5 

sec). The fault parallel (FP) spectrum is approximately identical to the ND spectrum up to the 

period of 1.5 secs and is 0 to 1% higher than the ND spectrum at longer periods for the 475-year 

event. For the 2475-year return period event, the FP spectrum is approximately 1% to 3% higher 

than the ND spectrum at longer structural periods (i.e., T > 1.5 sec). The spectral ordinates of 

horizontal uniform hazard spectra (UHS) for different return periods for site class D condition (Vs30 

= 885 ft/s) for the onshore and nearshore sites are tabulated in Tables 5-5 through 5-8 for No 

Directivity, Fault Normal, Fault Parallel, and Average Directivity conditions, respectively. Plate 39 

presents the FN/ND and FP/ND ratios for 475 and 2475 years. 
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Table 5.5: Horizontal Response Spectra (5% damping) for 475 and 2475-year Events for the 

Onshore and Nearshore Sites with No Directivity, for Site Class D (Vs30 = 885 ft/s) 

Period 

(sec) 

Spectral Acceleration  

475-year event – 

Onshore Site (g)  

Spectral Acceleration 

475-year event – 

Nearshore Site (g) 

Spectral Acceleration  

2475-year event – 

Onshore Site (g) 

Spectral Acceleration  

2475-year event – 

Nearshore Site (g) 

PGA 0.528 0.528 0.897 0.900 

0.03 0.567 0.568 0.985 0.989 

0.075 0.754 0.756 1.311 1.314 

0.1 0.903 0.904 1.576 1.579 

0.15 1.042 1.043 1.810 1.815 

0.2 1.133 1.134 1.966 1.972 

0.3 1.113 1.116 1.975 1.986 

0.5 0.916 0.918 1.685 1.701 

0.75 0.674 0.675 1.274 1.289 

1 0.530 0.531 1.017 1.031 

1.5 0.333 0.334 0.682 0.693 

2 0.241 0.241 0.510 0.519 

3 0.148 0.148 0.328 0.334 

4 0.111 0.111 0.246 0.250 

5 0.089 0.089 0.197 0.200 

6 0.074 0.074 0.164 0.167 

7 0.063 0.064 0.141 0.143 

8 0.055 0.056 0.123 0.125 

9 0.049 0.049 0.109 0.111 

10 0.044 0.044 0.098 0.100 
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Table 5.6: Horizontal Response Spectra (5% damping) for 475 and 2475-year Events for the 

Onshore and Nearshore Sites with Fault Normal Directivity, for Site Class D (Vs30 = 885 ft/s) 

Period 

(sec) 

Spectral Acceleration  

475-year event – 

Onshore Site (g)  

Spectral Acceleration 

475-year event – 

Nearshore Site (g) 

Spectral Acceleration  

2475-year event – 

Onshore Site (g) 

Spectral Acceleration  

2475-year event – 

Nearshore Site (g) 

PGA 0.528 0.528 0.897 0.900 

0.03 0.567 0.568 0.985 0.989 

0.075 0.754 0.756 1.311 1.314 

0.1 0.903 0.904 1.576 1.579 

0.15 1.042 1.043 1.810 1.815 

0.2 1.133 1.134 1.966 1.972 

0.3 1.113 1.116 1.975 1.986 

0.5 0.916 0.918 1.685 1.701 

0.75 0.674 0.675 1.274 1.289 

1 0.530 0.531 1.017 1.031 

1.5 0.333 0.334 0.682 0.693 

2 0.243 0.244 0.528 0.537 

3 0.150 0.150 0.351 0.357 

4 0.112 0.112 0.260 0.265 

5 0.090 0.090 0.209 0.213 

6 0.075 0.075 0.174 0.177 

7 0.064 0.064 0.150 0.152 

8 0.056 0.056 0.130 0.132 

9 0.050 0.050 0.116 0.118 

10 0.045 0.045 0.104 0.106 
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Table 5.7: Horizontal Response Spectra (5% damping) for 475 and 2475-year Events for the 

Onshore and Nearshore Sites with Fault Parallel Directivity, for Site Class D (Vs30 = 885 ft/s) 

Period 

(sec) 

Spectral Acceleration  

475-year event – 

Onshore Site (g)  

Spectral Acceleration 

475-year event – 

Nearshore Site (g) 

Spectral Acceleration  

2475-year event – 

Onshore Site (g) 

Spectral Acceleration  

2475-year event – 

Nearshore Site (g) 

PGA 0.528 0.528 0.897 0.900 

0.03 0.567 0.568 0.985 0.989 

0.075 0.754 0.756 1.311 1.314 

0.1 0.903 0.904 1.576 1.579 

0.15 1.042 1.043 1.810 1.815 

0.2 1.133 1.134 1.966 1.972 

0.3 1.113 1.116 1.975 1.986 

0.5 0.916 0.918 1.685 1.701 

0.75 0.674 0.675 1.274 1.289 

1 0.530 0.531 1.017 1.031 

1.5 0.333 0.334 0.682 0.693 

2 0.242 0.243 0.519 0.528 

3 0.149 0.150 0.341 0.347 

4 0.111 0.112 0.254 0.258 

5 0.089 0.089 0.202 0.205 

6 0.074 0.074 0.169 0.172 

7 0.064 0.064 0.145 0.148 

8 0.056 0.056 0.127 0.129 

9 0.049 0.050 0.113 0.115 

10 0.045 0.045 0.102 0.103 
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Table 5.8: Horizontal Response Spectra (5% damping) for 475 and 2475-year Events for the 

Onshore and Nearshore Sites with Average Directivity, for Site Class D (Vs30 = 885 ft/s) 

Period 

(sec) 

Spectral Acceleration  

475-year event – 

Onshore Site (g)  

Spectral Acceleration 

475-year event – 

Nearshore Site (g) 

Spectral Acceleration  

2475-year event – 

Onshore Site (g) 

Spectral Acceleration  

2475-year event – 

Nearshore Site (g) 

PGA 0.528 0.528 0.897 0.900 

0.03 0.567 0.568 0.985 0.989 

0.075 0.754 0.756 1.311 1.314 

0.1 0.903 0.904 1.576 1.579 

0.15 1.042 1.043 1.810 1.815 

0.2 1.133 1.134 1.966 1.972 

0.3 1.113 1.116 1.975 1.986 

0.5 0.916 0.918 1.685 1.701 

0.75 0.674 0.675 1.274 1.289 

1 0.530 0.531 1.017 1.031 

1.5 0.333 0.334 0.682 0.693 

2 0.242 0.243 0.524 0.533 

3 0.149 0.150 0.346 0.352 

4 0.112 0.112 0.257 0.262 

5 0.089 0.090 0.205 0.209 

6 0.074 0.075 0.172 0.174 

7 0.064 0.064 0.147 0.150 

8 0.056 0.056 0.128 0.130 

9 0.050 0.050 0.114 0.116 

10 0.045 0.045 0.103 0.105 

 

5.7.3 Seismic Hazard Deaggregation by Seismic Source 

Plates 40 to 42 present the seismic source contribution to the total mean hazard for PGA, 

structural period of 1 second (Sa [T=1.0s]) and 3 seconds (Sa [T=3.0s]), respectively, for the 

onshore location.  For short structural periods (i.e. PGA) the seismic hazard is dominated by 

intermediate depth to deep intraslab sources for both 475- and 2475-year return periods. At longer 

structural periods (i.e. 1 and 3 seconds) contribution from the interface subduction source (S2-

Prince William Sound), is also significant.  Only one local fault, F7 - Middle Ground Shoal Anticline 
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and Granite Point Anticline, is seen to contribute (up to 32%) for the return periods considered.  

Fault F7 has a mean slip rate of 0.0437 in/yr (1.11 mm/yr) compared to the other local faults with 

mean slip rates on the order of 0.0043 in/yr (0.11 mm/yr). Similar results are presented on Plates 

43 to 45 for the nearshore Location. 

Plates 46 and 47 present bar plots illustrating the fractional contribution to the total mean hazard 

from different seismic sources for 475- and 2475-year return periods for the onshore location. 

Similar results are presented on Plates 48 and 49 for the nearshore location.   

As shown on Plate 46, for the 475-year return period, at both short and long periods hazard is 

dominated by intraslab source (62% for PGA, 36% for T=1 sec and 28% for T=3 sec). Contribution 

from S2 Interface - Price William Sound is about 8% at PGA, 20% at T=1 sec and 30% at T=3 sec. 

Middle Ground Shoal Anticline and Granite Point Anticline (F7) planar source contributes about 8% 

at PGA, about 17% at T=1.0 sec and about 19% at T=3 sec. Finally, the contribution from the 

shallow crustal background gridded seismicity and mega thrust gridded seismicity sources are in 

the range of 6 to 13%. In general, similar results are obtained for the 2475-year return period event 

on Plate 47, except decreased contribution from background gridded seismicity sources and 

increased contribution from interface subduction source–S2 and Middle Ground Shoal Anticline 

and Granite Point Anticline (F7) planar source at long periods (reaching about 24% and 30% at 

T=1 sec, respectively). Also, increased contribution (~36%) from interface subduction source S2 

(Prince William Sound) was observed at T=3 sec for the 2,475-year event. Similar contributions to 

the onshore location is observed at the nearshore location within 1% difference for the 475-year 

event (Plate 48). For the 2475-year return period event at the nearshore location, the Middle 

Ground Shoal Anticline and Granite Point Anticline (F7) planar source has an increased 

contribution of up to 4% at T=3 sec in comparison to the onshore location (Plate 49). 

5.7.4 Seismic Hazard Deaggregation by Earthquake Magnitude, Distance and Epsilon 

Plate 50 presents the seismic hazard deaggregation with respect to earthquake magnitude, 

distance, and epsilon for PGA, structural period of 1 second and structural period of 3 seconds, for 

475- and 2475-year return periods, respectively, for the onshore location. Similar results for the 

nearshore location are presented in Plate 51.     

In general, for the return period of 475 years for both short and longer structural periods the 

seismic hazard at the project site is controlled by mainly three scenarios: (a) intermediate to large 

magnitude (i.e., 7.0 to 8.0) events at distances between about 31 to 93 mi (50 km to 150 km) 

associated with the intermediate depth to deep intraslab sources, (b) larger magnitudes between 9 

to 9.2 at distances between about 31 to 62 mi (50 km to 100 km) attributed to the megathrust 

events on S2 interface (Prince William Sound), and (c) and intermediate to large magnitude events 

(i.e., 7 to 7.5) at distances about 3.1 to 6.2 mi (5 to 10 km) from the project site associated 

primarily with Middle Ground Shoal Anticline and Granite Point Anticline (F7) planar source. For 
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longer structural periods (i.e., period of 1 and 3 seconds), the relative contribution from large 

magnitude (i.e., 7.0 to 8.0 and 9.0 to 9.2) events increases.   

Similar trends are also observed for the longer return period of 2475 years, with generally larger 

contributions from larger epsilon (ε) values. Epsilon is the number of standard deviations that the 

estimated ground motion amplitude deviates from the estimated median ground motion amplitude. 

Thus, an epsilon of 1 indicates that the probabilistic value of the ground motion corresponds to a 

median plus one-standard-deviation value. These results are observed for both the onshore and 

nearshore location. 

5.8 Comparison with Regional Studies 

The results of the probabilistic seismic hazard analyses, using the seismotectonic model outlined in 

the current report, were compared with results from United States Geologic Survey (USGS) 2007 

seismic hazard maps for Alaska (Wesson et al., 2007). The 2007 USGS study provide ground 

motion estimates at a regional scale at a bedrock horizon. In order to compare the results, generic 

amplification factors were used with the USGS spectra at rock level to estimate shaking at the 

competent soil horizon. Code based soil amplification ratios from ASCE 7-10 (ASCE, 2010) were 

used for this purpose. The short periods were amplified by 5 percent and long periods by 65 

percent. Plate 52 shows a comparison of site-specific spectra from this study for the onshore 

location and 2007 USGS study. As shown on the plate, the site-specific study is generally similar to 

the USGS study for 975-year return period at structural periods greater than 0.5 seconds. 

Differences in UHS can be associated with:  

 Ground motion prediction equations: The current study uses NGA West 2 (Bozorgnia et al., 

2014) relationships for the shallow crustal sources, BC Hydro (2012) with Abrahamson et 

al. (2015) adjustments, Zhao et al (2006) and Atkinson and Macias (2009) relationships for 

the interface sources and BC Hydro (2012) with Abrahamson et al. (2015) adjustments, 

Zhao et al. (2006) and Atkinson and Boore (2003) relationships for the intraslab sources, as 

shown on Table 5.4. The 2007 USGS study used Youngs et al 1997 (interface) and Sadigh 

et al. (1997) for the Megathrust and Transition fault, Abrahamson and Silva (1997), Boore 

et al (1997), Sadigh et al (1997) and Campbell and Bozorgnia (2003) for shallow crustal 

source and Youngs et al. (1997) and Atkinson and Boore (2003) for deeper earthquakes. 

The GMPEs used in this study are based on significantly larger earthquake databases than 

those used in the 2007 USGS study. The subduction and NGA West-2 relationships used in 

this study have also been adopted by USGS in their updated 2014 seismic hazard maps 

(Petersen et al., 2014).  

 Seismic source characterization (geometry and magnitude recurrence): Seismic source 

geometry and maximum magnitude potential are very similar for both studies with the 

exception of faults F1 through F15, F21 and F22 which were not included in the USGS 
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study.  As these faults do not significantly contribute to the hazard, differences in source 

geometry and maximum magnitude potential is not seen as a significant factor contributing 

to the differences in UHS, apart from the contribution of Fault F7. Also, as stated in Section 

2.0, the June 23, 2014 Rat Islands event is the largest intraslab earthquake to be included 

in the historic catalog for the Alaska-Aleutian arc. The occurrence of this event caused the 

Mmax of intraslab events to be raised to M 8.0, from the Mmax of 7.5 used in the 2007 USGS 

study. 

 Magnitude recurrence of the megathrust earthquakes:  The 2007 USGS study uses a time-

independent model. Due to the large release of energy from the M9.2 earthquake just 50 

years ago it was deemed appropriate to give some weight to time-dependent renewal 

models for the S2 subduction interface source.  The time-dependent models effectively 

reduces the earthquake recurrence and hazard on these sources.  Hence, the current study 

uses a combination of time-independent and time-dependent models for the interface 

source S2. The USGS model assumes the hazard from this source does not change in 

time, which results in an increase of hazard as compared to the time-dependent model.   

5.9 Horizontal Ground Motions per NFPA 59A 2006 / ASCE 7-05 

5.9.1 Operational Basis Earthquake (OBE) 

As presented in Section 5.7, the onshore and nearshore response spectra for the 475-year return 

period event are nearly identical. Hence, the OBE spectrum developed for the nearshore location 

is proposed as representative for the project site. The OBE spectra for fault normal (FN) and fault 

parallel components (FP) are presented for structural analyses purposes. Plate 53 presents the 

acceleration response spectra (fault normal (FN) and fault parallel (FP) components) at ground 

surface (Vs30 = 885 ft/s) for OBE (475-years return period) for the project facilities and Table 5.9 

tabulates the spectral ordinates of the OBE spectra. As shown in Plate 49, the OBE spectra for FN 

and FP components are very similar. 



  

Report No. 04.10140334-6  
 

5-17 

Confidential 
LNG Facilities Probabilistic Seismic Hazard Analysis (PSHA) Report 

USAL-FG-GRHAZ-00-002015-001 Rev.0 
5-May-2016 

 

 

Table 5.9: 5-percent Damped Horizontal Acceleration Response Spectrum at Ground 

Surface for OBE per NFPA 59A 2006, Vs30 = 885 ft/s 

Period (sec) 

Spectral Acceleration  

for Operating Basis Earthquake 

(OBE) for the Onshore and 

Nearshore Locations – Fault 

Normal (FN), g  

Spectral Acceleration  

for Operating Basis 

Earthquake (OBE) for the 

Onshore and Nearshore 

Locations – Fault Parallel (FP), 

g 

PGA 0.528 0.528 

0.03 0.568 0.568 

0.075 0.756 0.756 

0.1 0.904 0.904 

0.15 1.043 1.043 

0.2 1.134 1.134 

0.3 1.116 1.116 

0.5 0.918 0.918 

0.75 0.675 0.675 

1 0.531 0.531 

1.5 0.334 0.334 

2 0.244 0.243 

3 0.150 0.150 

4 0.112 0.112 

5 0.090 0.089 

6 0.075 0.074 

7 0.064 0.064 

8 0.056 0.056 

9 0.050 0.050 

10 0.045 0.045 

 

5.9.2 Maximum Considered Earthquake (MCE) / Safe Shutdown Earthquake (SSE) 

Both probabilistic and deterministic analyses were conducted to estimate the Maximum 

Considered Earthquake (MCE) ground motion, per the definition in ASCE 7-05. The probabilistic 5-

percent damped horizontal response spectra were developed for the Alaska LNG Project site for 

return period of 2,475 years. The deterministic earthquake response spectrum was calculated as 

the 150% of the largest median 5 percent damped spectral response acceleration at that period for 
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characteristic earthquakes on all known active faults within the region.  Deterministic analyses for 

three earthquake scenarios: (1) the planar fault F7 (Middle Ground Shoal anticline and Granite 

Point anticline), (2) the planar fault F3 (Kenai – Cannery loop Anticline), and (3) the S2 interface 

(Prince William Sound) were conducted using the attenuation relationships according to Table 5.4. 

Due to the close proximity of faults F3 and F7 to the onshore and nearshore facility locations, 

separate deterministic analyses were performed for the onshore and nearshore sites. The 

deterministic S2 interface subduction scenario assumed a magnitude (Mw) of 9.2 earthquake and a 

rupture distance (R) of 43.8 mi (70.1 km) for the onshore site and 44.3 mi (70.9 km) for the 

nearshore site. The deterministic planar fault F3 scenario assumed a magnitude of 7.1 and a 

rupture distance of 5.8 mi (9.2 km) for the onshore site and 6.3 mi (10.1 km) for the nearshore site, 

while the deterministic planar fault F7 scenario assumed a magnitude of 7.2 and a rupture distance 

of 4.4 mi (7.1 km) for the onshore site and 3.8 mi (6.1 km) for the nearshore site. Plates 54 and 55 

present the development of the 150% median deterministic response spectrum without directivity 

effects for the onshore and the nearshore locations, respectively. As shown on both Plates 54 and 

55, the deterministic spectrum is controlled by the planar fault F7 scenario at all periods. 

Plate 56 presents the procedure of development of acceleration response spectra for the Maximum 

Considered Earthquake (MCE) for Site Class D, Vs30 = 885 ft/s for the onshore location for the fault 

normal (FN) component. The plate shows: (a) the UHS corresponding to a return period of 2,475-

years (i.e., 2 percent probability of exceedance in 50 years) for the Fault Normal (FN) condition; (b) 

the 150% median deterministic spectrum calculated for the characteristic magnitude events, from 

Plate 54 and incorporating the fault normal directivity effects using the FN/ND ratios estimated in 

PSHA for the 2475-year event (Plate 39), (c) the deterministic limit spectrum per ASCE 7-05, 

Section 21.2; and (d) the resulting project fault normal (FN) MCE spectrum for the onshore 

location.  Per the ASCE 7-05 guidelines, deterministic MCE spectrum is the highest of the 150% 

median deterministic spectrum and the deterministic limit spectrum.  Site specific MCE spectrum is 

the lowest of UHS corresponding to a return period of 2,475-years (i.e., 2 percent probability of 

exceedance in 50 years) and the deterministic MCE spectrum. As shown on the plate, the MCE 

spectral acceleration is controlled by the probabilistic site-specific spectrum at short periods (less 

than 0.09 sec), by the 150% median deterministic spectrum for periods between 1 to 3 secs, and 

by the ASCE 7-05 deterministic limit at the remaining periods. Similar results are presented on 

Plate 57 for the onshore location for the fault parallel (FP) component. Table 5.10 tabulates the 

smoothed spectral ordinates of the 5-percent damped horizontal spectra for SSE for the onshore 

location, for fault normal and fault parallel components. 

Plates 58 and 59 present the procedure of development of acceleration response spectra for the 

Maximum Considered Earthquake (MCE) for Site Class D, Vs30 = 885 ft/s for the nearshore location 

for the fault normal (FN) and fault parallel (FP) component, respectively. For the nearshore 

location, the MCE spectral acceleration is controlled by the probabilistic site-specific spectrum at 

short periods (less than 0.09 sec), by the 150% median deterministic spectrum for periods between 
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0.25 to 0.35 secs and 1 to 4 secs and by the ASCE 7-05 deterministic limit spectrum at the 

remaining periods. The final SSE nearshore spectra were smoothed for the development of 

spectrally matched motions by increasing uniformly the plateau of the spectra to the maximum 

value as presented on Plate 60. Table 5.11 tabulates the smoothed spectral ordinates of the 5-

percent damped horizontal spectra for SSE for the nearshore location, fault normal and fault 

parallel components. Plate 61 compares the estimated Maximum Considered Earthquake (MCE) 

Spectra (fault normal and fault parallel) at ground surface (Vs30 = 885 ft/s) per ASCE 7-05 

estimated for the onshore location to those for the nearshore location. Ground motions results are 

generally similar for the onshore and the nearshore locations. Both the fault normal and fault 

parallel MCE spectra for the nearshore location are approximately 6% to 7% higher than the 

corresponding spectra of the onshore location for structural periods T = 1 to T = 3 secs, due to the 

prevailing deterministic scenario at this period range. Plate 62 presents the comparison of 

Maximum Considered Earthquake (MCE) Spectra (fault normal and fault parallel) at ground surface 

(Vs30 = 885 ft/s) per ASCE 7-05 estimated for the representative onshore location to the onshore 

Phase 1 PSHA Results (Vs30 = 900 ft/s) (Fugro Report No. 04.10140094-6). 
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Table 5.10:  5-percent Damped Horizontal Acceleration Response Spectrum for the Onshore 

Location for SSE/MCE at the Ground Surface per NFPA 59A 2006 / ASCE 7-05, Vs30 = 885 ft/s 

Period (sec) 
Spectral Acceleration  

 Fault Normal (FN), (g) 

Spectral Acceleration  

Fault Parallel (FP), (g) 

PGA 0.897 0.897 

0.03 0.985 0.985 

0.09 1.491 1.491 

0.1 1.500 1.500 

0.15 1.500 1.500 

0.2 1.500 1.500 

0.3 1.500 1.500 

0.5 1.500 1.500 

0.6 1.500 1.500 

0.75 1.200 1.200 

1 0.900 0.900 

1.5 0.625 0.625 

2 0.479 0.472 

3 0.311 0.302 

4 0.225 0.225 

5 0.180 0.180 

6 0.150 0.150 

7 0.129 0.129 

8 0.113 0.113 

9 0.100 0.100 

10 0.090 0.090 
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Table 5.11:  5-percent Damped Smoothed Horizontal Acceleration Response Spectrum for 

the Nearshore Location for SSE/MCE at the Ground Surface per NFPA 59A 2006 / ASCE 7-

05, Vs30 = 885 ft/s 

Period (sec) 
Spectral Acceleration  

Fault Normal (FN), (g) 

Spectral Acceleration  

Fault Parallel (FP), (g) 

PGA 0.901 0.901 

0.03 0.990 0.990 

0.09 1.496 1.496 

0.1 1.533 1.533 

0.15 1.533 1.533 

0.2 1.533 1.533 

0.3 1.533 1.533 

0.5 1.533 1.533 

0.6 1.533 1.533 

0.75 1.200 1.200 

1 0.961 0.961 

1.5 0.671 0.671 

2 0.515 0.506 

3 0.334 0.324 

4 0.225 0.225 

5 0.180 0.180 

6 0.150 0.150 

7 0.129 0.129 

8 0.113 0.113 

9 0.100 0.100 

10 0.090 0.090 

 

5.9.3 Design Earthquake (DE) Spectrum 

The aforementioned PSHA analyses were conducted for subsurface conditions with a time-

weighted average shear wave velocity (Vs30) of 885 ft/s. ASCE 7-05 provides a procedure for the 

development of the “design spectrum” at the same soil conditions with those from the Maximum 

Considered Earthquake (MCE). The development of the “design spectrum” at ground surface (Vs30 

= 885 ft/s) per ASCE 7-05 is shown on Plate 63 for the onshore location for the fault normal (FN) 
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component: (a) the onshore MCE fault normal component; and (b) 2/3 the onshore  MCE fault 

normal component for Site Class D which is the project DE spectrum. The developed spectrum 

cannot be less than 80% of the general spectrum (Section 11.4.5 of ASCE 7-05). The ASCE 7-05 

DE spectrum is two thirds of the site-specific MCE spectrum. Similar results are presented on Plate 

64 for the onshore location for the fault parallel (FN) component. Table 5.12 tabulates the spectral 

ordinates of the 5-percent damped horizontal spectrum for DE for the onshore location, fault 

normal and fault parallel components. 

Plates 65 and 66 present the procedure of development of acceleration response spectra for the 

Maximum Considered Earthquake (MCE) for Site Class D, Vs30 = 885 ft/s for the nearshore location 

for the fault normal (FN) and fault parallel (FP) component, respectively. The ASCE 7-05 DE 

spectrum is two thirds of the site-specific nearshore MCE spectrum for both the fault normal and 

fault parallel components. Table 5.13 tabulates the spectral ordinates of the 5-percent damped 

horizontal spectra for DE for the nearshore location, for fault normal and fault parallel components. 

Plate 67 presents the summary results of horizontal acceleration response spectra for OBE and 

SSE for planned onshore facilities at the ground surface with a time-weighted average shear wave 

velocity (Vs30) of 885 ft/s per NFPA 59A 2006 ground motion requirements. Similar results are 

presented on Plate 68 for MCE and DE at the ground surface with a time-weighted average shear 

wave velocity (Vs30) of 885 ft/s per ASCE 7-05 ground motion requirements. Plates 69 and 70 show 

similar results for the nearshore facilities. Horizontal Ground Motions per IBC (2012) / NFPA 59A 

2013 are presented in Appendix C. 
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Table 5.12: 5-percent Damped Horizontal Acceleration Response Spectrum for the Onshore 

Location for Design Earthquake (DE) at the Ground Surface per ASCE 7-05, Vs30 = 885 ft/s 

Period (sec) 
Spectral Acceleration  

– Fault Normal (FN), (g) 

Spectral Acceleration  

– Fault Parallel (FP), (g) 

PGA 0.598 0.598 

0.03 0.657 0.657 

0.09 0.994 0.994 

0.1 1.000 1.000 

0.15 1.000 1.000 

0.2 1.000 1.000 

0.3 1.000 1.000 

0.5 1.000 1.000 

0.6 1.000 1.000 

0.75 0.800 0.800 

1 0.600 0.600 

1.5 0.417 0.417 

2 0.320 0.314 

3 0.207 0.201 

4 0.150 0.150 

5 0.120 0.120 

6 0.100 0.100 

7 0.086 0.086 

8 0.075 0.075 

9 0.067 0.067 

10 0.060 0.060 
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Table 5.13: 5-percent Damped Horizontal Acceleration Response Spectrum for the 

Nearshore Location for Design Earthquake (DE) at the Ground Surface per ASCE 7-05, Vs30 = 

885 ft/s 

Period (sec) 
Spectral Acceleration  

– Fault Normal (FN), (g) 

Spectral Acceleration  

– Fault Parallel (FP), (g) 

PGA 0.601 0.601 

0.03 0.660 0.660 

0.09 0.998 0.998 

0.1 1.022 1.022 

0.15 1.022 1.022 

0.2 1.022 1.022 

0.3 1.022 1.022 

0.5 1.022 1.022 

0.6 1.022 1.022 

0.75 0.800 0.800 

1 0.640 0.640 

1.5 0.447 0.447 

2 0.343 0.337 

3 0.223 0.216 

4 0.150 0.150 

5 0.120 0.120 

6 0.100 0.100 

7 0.086 0.086 

8 0.075 0.075 

9 0.067 0.067 

10 0.060 0.060 

 

5.10 Vertical Ground Motions per NFPA 59A 2006 / ASCE 7-05 

Robust ground motion prediction equations for vertical ground motions and V/H ratios are not 

currently available in the literature for the subduction seismic environment similar to that of AKLNG 

project region. Hazard deaggregation results (Plates 46 through 49) show that short period ground 

motion hazard at the project site is primarily associated with the intraslab subduction sources. 

Gülerce and Abrahamson (2011) developed V/H ratios using existing V/H relations for shallow 

crustal earthquakes based on the site Vs30 from the PEER-NGA West 1 database. However, such a 
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published V/H model is currently not available for intraslab subduction events. Therefore, in 

consultation with EMALL, the V/H ratios for the project site were developed based on recorded 

data from the Alaska region. Fugro selected shallow crustal recordings from Alaska and 

downloaded them from the Pacific Earthquake Engineering Research (PEER) Center NGA motion 

database website. These motions corresponded to free-field conditions and Site Class D 

classification per NEHRP (2003). In addition, more motions were selected from the Network for 

Earthquake Engineering Simulation (NEES) at UCSB site for the Delaney Park Downhole Array 

Station in Alaska. Tables 5.14 and 5.15 present the downloaded motions recorded in Alaska for 

Site Class D and rupture distance up to 31 mi (50 km) from the Delaney Park Downhole Array 

Station and the Pacific Earthquake Engineering Research (PEER) Center NGA motion database 

website, respectively.  

Table 5.14: List of Acceleration Records in Alaska for Site Class D and Rupture Distance up 

to 31 mi / 50 km from the Delaney Park Downhole Array Station 

Earthquake 

ID 
Year Month Day 

Max 

PGA (g) 

Magnitude 

(ML) 

Epicentral 

Distance  

mi (km) 

Source Depth  

mi (km) 

5047474 2005 2 16 0.014 4.74 7.93 (12.69) 21.75 (34.80) 

6208470 2006 7 27 0.036 4.7 8.29 (13.26) 22.49 (35.99) 

12137460 2012 5 16 0.019 4.6 6.77 (10.83) 38.58 (61.72) 

9097480 2009 4 7 0.015 4.8 17.49 (27.98) 20.64 (33.03) 

10263490 2010 9 20 0.032 4.9 12.92 (20.67) 28.39 (45.43) 

12339002 2012 12 4 0.026 5.8 27.68 (44.29) 33.25 (53.20) 

10097460 2010 4 7 0.004 4.6 26.71 (42.73) 22.08 (35.32) 
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Table 5.15: List of Acceleration Records in Alaska for Site Class D and Rupture Distance up 

to 31 mi / 50 km from the Pacific Earthquake Engineering Research (PEER) Center NGA 

Motion Database 

Earthquake 

ID 
Year Month Day 

Max 

PGA (g) 

Magnitude 

(Mw) 

Rupture 

Distance  

mi (km) 

Source 

Depth  

mi (km) 

2114 2002 11 3 0.333 7.9 0.11 (0.18) 5.6 (8.9) 

2111 2002 11 3 0.109 7.9 26.9 (42.99) 5.6 (8.9) 

Plate 71 presents the results for the V/H ratios for distances ranging from 0-31 mi (0-50 km). The 

average and the median of the V/H ratios are also provided on the Plate. The plate also provides 

the lower threshold of one half per NPFA-59A (2006) guidelines. The recommended V/H ratios 

used in the present study was developed as a smooth envelope of the median of the recorded 

events for Site Class D in Alaska for distances from 0-31 mi (0-50 km). The recommended V/H 

ratios used herein are tabulated in Table 5.16. 
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Table 5.16: Recommended V/H Ratios for the Development of Vertical Spectra for Site Class 

D at the Project Site 

Period (sec) V/H  

PGA 0.770 

0.03 0.930 

0.075 1.310 

0.1 1.179 

0.15 0.980 

0.2 0.846 

0.3 0.630 

0.5 0.500 

0.75 0.500 

1 0.500 

1.5 0.500 

2 0.500 

3 0.500 

4 0.500 

5 0.500 

6 0.500 

7 0.500 

8 0.500 

9 0.500 

10 0.500 

 

The vertical response spectra at surface for SSE / MCE and OBE, were developed by applying V/H 

ratios developed above for site class D to the horizontal response spectra of average directivity at 

surface. The vertical response spectrum DE at surface was estimated as two-thirds of MCE per 

ASCE 7-05 guidelines. Plate 72 presents the vertical acceleration spectra at the ground surface 

estimated for SSE and OBE for the planned onshore and nearshore facilities, per NFPA-59A 2006 

ground motion requirements. Table 5.17 lists the spectral ordinates of the vertical SSE and OBE 

spectra at surface for the planned onshore and nearshore facilities. 

Plate 73 presents the vertical acceleration spectra at the ground surface estimated for Maximum 

Considered Earthquake (MCE) and Design Earthquake (DE) for planned onshore and nearshore 



  

Report No. 04.10140334-6  
 

5-28 

Confidential 
LNG Facilities Probabilistic Seismic Hazard Analysis (PSHA) Report 

USAL-FG-GRHAZ-00-002015-001 Rev.0 
5-May-2016 

 

facilities, per ASCE 7-05 ground motion requirements. Table 5.18 lists the spectral ordinates of the 

vertical MCE and DE spectra at surface for the planned onshore and nearshore facilities. 

Table 5.17: 5%-damped Vertical Spectra at Ground Surface per NFPA-59A 2006 

Period (seconds) 

Spectral Acceleration  

for OBE Level for the 

Onshore and Nearshore 

Locations (g) 

Spectral Acceleration 

for SSE Level for the 

Onshore Location  

(g) 

Spectral Acceleration 

for SSE Level for the 

Nearshore Location  

(g) 

0.01 0.407 0.691 0.694 

0.03 0.528 0.916 0.921 

0.075 0.990 1.788 1.795 

0.1 1.066 1.769 1.769 

0.15 1.022 1.470 1.470 

0.2 0.960 1.269 1.269 

0.3 0.703 0.945 0.966 

0.5 0.459 0.750 0.750 

0.75 0.338 0.600 0.600 

1 0.266 0.450 0.480 

1.5 0.167 0.313 0.335 

2 0.122 0.238 0.255 

3 0.075 0.153 0.164 

4 0.056 0.113 0.113 

5 0.045 0.090 0.090 

6 0.037 0.075 0.075 

7 0.032 0.064 0.064 

8 0.028 0.056 0.056 

9 0.025 0.050 0.050 

10 0.023 0.045 0.045 
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Table 5.18: 5%-damped Vertical Spectra at Ground Surface per ASCE 7-05 

Period 

(seconds) 

Spectral Acceleration  

for MCE Level - 

Onshore Site 

(g) 

Spectral Acceleration 

for MCE Level - 

Nearshore Site 

(g) 

Spectral Acceleration  

for DE Level - 

Onshore Site 

(g) 

Spectral Acceleration 

for DE Level - 

Nearshore Site 

(g) 

0.01 0.691 0.694 0.461 0.463 

0.03 0.916 0.921 0.611 0.614 

0.075 1.788 1.795 1.192 1.196 

0.1 1.769 1.769 1.179 1.179 

0.15 1.470 1.470 0.980 0.980 

0.2 1.269 1.269 0.846 0.846 

0.3 0.945 0.966 0.630 0.644 

0.5 0.750 0.750 0.500 0.500 

0.75 0.600 0.600 0.400 0.400 

1 0.450 0.480 0.300 0.320 

1.5 0.313 0.335 0.208 0.224 

2 0.238 0.255 0.159 0.170 

3 0.153 0.164 0.102 0.110 

4 0.113 0.113 0.075 0.075 

5 0.090 0.090 0.060 0.060 

6 0.075 0.075 0.050 0.050 

7 0.064 0.064 0.043 0.043 

8 0.056 0.056 0.038 0.038 

9 0.050 0.050 0.033 0.033 

10 0.045 0.045 0.030 0.030 
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6.0 DEVELOPMENT OF GROUND ACCELERATION TIME HISTORIES 

6.1 Ground Motion Selection 

Five sets (each with three components) of accelerograms were selected and spectrally matched to 

ground surface (Vs30 = 885 ft/s) OBE and SSE spectra per NFPA 59A 2006 guidelines.  

Appendix D presents similar results for per the NFPA 59A 2013 guidelines. Typically, the main 

considerations while selecting the time histories are: (1) design earthquake parameters (magnitude 

and distance) resulting from hazard deaggregation, (2) the overall shape of the response spectra 

relative to the target spectrum, (3) earthquake source mechanism, (4) subsurface conditions at the 

recording station, (5) significant duration (D5_95), and (6) frequency content of the time histories.   

The deaggregation results in Section 5.0 show that the seismic hazard is mainly controlled by three 

scenarios in both short and long structural periods: (a) larger magnitudes between 9 to 9.2 at 

distances typically about 31 to 62 mi (50 km to 100 km) associated  with the S2 Interface - Prince 

William Sound, (b) intermediate to large magnitude (i.e., 7.0 to 8.0) events at distances between 

about 31 to 93 mi (50 km to 150 km) primarily associated with the intermediate depth and deep 

intraslab sources, and (c) intermediate to large magnitude events (i.e., 7 to 7.5) at short distances 

about 3.1 to 6.2 mi (5 to 10 km) associated with the Middle Ground Shoal Anticline and Granite 

Point Anticline (F7) planar source. Ground motion time histories were selected accordingly.  As 

mentioned above, the primary considerations in selection of ground motion time histories included 

magnitude and distance ranges of the contributing scenarios, overall spectral shape, earthquake 

source mechanism and subsurface conditions at the recording station.   

One set of recording from M 7.14 Duzce 1999 earthquake was selected, to represent ground 

motions associated with the intermediate to large magnitude shallow crustal earthquake at 

relatively short distance (attributed to fault F7 - Middle Ground Shoal Anticline and Granite Point 

Anticline).  To incorporate near-source and rupture directivity effects due to fault F7, the original 

recorded Duzce motions were rotated to resolve a set of fault-normal and fault-parallel horizontal 

components and these motions were then used generate the design acceleration time histories for 

OBE and SSE/MCE events. Remaining four sets of recordings were selected to represent ground 

motions associated with the intermediate to larger magnitude subduction earthquakes. One 

megathrust (interface) recoding from M 8.8 Chile earthquake was selected to represent the ground 

motions associated with the larger magnitude mega thrust interface earthquakes. We note that 

very few deep intraplate, large magnitude subduction earthquake recordings are available 

worldwide, especially recordings with compatible spectral shapes with the target OBE and SSE 

level spectra developed for the project site. Therefore, the available records in the database to 

select from were limited. Hence, in addition to one intraslab recording (M 7.6 El Salvador, 2001), 

we included another interface recording from, M 8.1 Mexico 1985 earthquake and a larger 
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magnitude shallow crustal recording from M 7.9 Denali 2002 earthquake that were in agreement 

with the magnitude-distance deaggregation of the seismic hazard and in general compliance with 

all the other seed ground motion selection criteria. It is noted that the recent 2011 Tohoku ground 

motions were considered, but the recorded spectral shapes were quite different than the ones 

developed for this project. Shallow crustal recordings (Duzce and Denali) were selected and 

downloaded from the Pacific Earthquake Engineering Research (PEER) Center NGA motion 

database website (http://ngawest2.berkeley.edu/).  Seed time histories of subduction events were 

downloaded from the Consortium of Organizations for Strong-Motion Observations Systems 

(COSMOS) Virtual Data Center website (http://strongmotioncenter.org/vdc/scripts/default.plx). 

Table 6.1 summarizes the relevant parameters of the selected seed time histories.  

Table 6.1: Summary of Selected Seed Motion Characteristics   

Earthquake Station 
Magnitude/Style 

of Faulting 

Distance 

in mi (km) 

Vs30 

in ft/s (m/s) 

/ Soil Type 

Motion ID 
PGA 

(g) 

Longest 

Usable 

Period (s) 

D5-75 / D5-95
1 

(s) 

Duzce, 1999 Duzce 7.14/Strike-slip 4.1 (6.6) 925 (282) 

DZCFN 

DZCFP 

DZC-UP 

0.40 

0.52 

0.35 

10.0 

7.3 / 11.1 

7.0 / 10.9 

5.8 / 11.0 

Denali, 2002 
Camp 
(Temp) 

7.90/Strike Slip 31.2 (49.9) 1310 (399.4) 

Carlo-090 

Carlo-360 

Carlo-UP 

0.10 

0.08 

0.07 

12.8 

12.6 / 24.3 

10.2 / 19.3 

11.5 / 21.7 

Mexico, 1985 La Union 
8.1/Subduction-

Interface 
52.1 (83.9) Rock 

UNIO-N00W 

UNIO-N90W 

UNIO-UP 

0.17 

0.15 

0.14 

10.02 

14.9 / 24.3 

16.5 / 26.4 

16.8 / 27.6 

El Salvador, 
2001 

Cutuco 
7.6/ Subduction-

Intraslab 
70.8 (114) 

Acid 
Pyroclastic, 

Volcanic 
Epiclastics 

CTO-180 

CTO-270 

CTO-UP 

0.09 

0.08 

0.06 

10.02 

18.1 / 27.3 

18.8 / 28.6 

20.6 / 29.9 

Chile, 2010 
Santiago La 

Florida 
8.8/Subduction- 

Interface 
59.7 (96.1) Unknown 

MEP-EW 

MEP-NS 

MEP-V 

0.17 

0.24 

0.13 

10.02 

27.5 / 41.3 

25.5 / 39.8 

32.8 / 50.1 

1 Duration based on the time interval between the points at which 5% and 75% (D5-75) / 5% and 95% (D5-95) of the total energy was recorded. 

2 Longest usable frequency after filtering. 

 

 

 

6.2 Approach 

6.2.1 Modification of Selected Seed Motions 
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Acceleration time histories at the ground surface (two horizontal and one vertical components) 

were generated for the project area by spectrally matching recorded acceleration time histories to 

the OBE and SSE target spectra developed from PSHA (shown on Plates 67, 70 and 72) 

according to the ASCE 4-98 spectral matching criteria. A time-domain spectral matching procedure 

was used to better preserve the characteristics of the seed time histories.  The procedure usually 

involves the following steps: 

 Rotation of original motions to obtain motions in the FN and FP directions 

 Spectral matching of the motions to the target spectra; 

 Baseline correction of the spectrally matched motions; and 

 Validation per the ASCE 4-98 requirements. 

6.2.2 Rotation of Original Motions to FN and FP Components 

As mentioned earlier, the original recorded Duzce horizontal time histories were rotated to resolve 

the fault normal and fault parallel components. For the Duzce motion, the orientation of the strike of 

the fault is parallel to the DZC270 component. Since the remaining four sets of recordings were 

selected to represent ground motions associated with the intermediate to larger magnitude 

subduction earthquakes at larger distances and the directivity effects are insignificant for those 

recordings, the seed time histories were not rotated.  

6.2.3 Time-Domain Spectral Matching 

A time-domain spectral matching procedure was adopted for this project.  Time-domain spectral 

matching adds finite wavelets in the time domain to decrease the spectral deficiencies between the 

seed motion and the target spectra.  The result is a realistic looking time history that preserves the 

seed motion characteristics while generally achieving a close match with the target frequency 

spectra at all spectral ordinates. 

The time-domain spectral matching was accomplished using the computer code RSPMATCH 

written by Abrahamson (2003), which generally follows the algorithm as set forth by Lilhanand and 

Tseng (1988).  As stated above, this code calculates the spectral differences between a response 

spectrum and a target spectrum, and then adds wavelets in the time domain to alter the frequency 

content to reduce the differences. 

The quality of the results is measured by the tolerance to which the matched motions converge 

toward the target spectrum, and how well the matched motions compare to the original motions in 

the time domain. In particular, the matched displacement and velocity time histories should look 

reasonable and reflect some of the predominant characteristics of the original motions. 

6.2.4 Baseline Correction 
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A final baseline correction was necessary to remove any permanent offset imposed on the time 

history through the spectral matching procedure. This baseline correction was carried out by fitting 

an nth order polynomial (where n = 4 to 10) to the displacement time history. The second derivative 

of this polynomial is then subtracted from the acceleration time history.   

6.2.5 Validation per the ASCE 4-98 Requirements 

Per the request of EMALL, the final spectrally matched motions were checked against the ASCE 4-

98 criteria (in Section 2.3) for time histories. If the spectrally matched acceleration time history 

failed one criterion, then the matching was rejected and a new spectral match was performed. 

When all three components of a motion were matched, the cross-correlation coefficients between 

the time history components were calculated according to: 

Corr(x,y) = [∑ (x-mx) (y-my)/n]/(σx σy)                       (6-1) 

where x and y are the acceleration amplitudes for each of two components, mx and my are their 

means (which are effectively zero), n is the number of time steps in each time history, the 

summation is done over all time steps, and σx and σy are the standard deviations of x and y. This 

calculation is made using the CORREL function within Excel. Two time histories are considered 

statistically independent when the absolute value of the correlation coefficient does not exceed 0.3, 

per ASCE 4-98. 

6.3 Spectrally Matched Motions Per NFPA 59A 2006 

The spectrally matched motions for OBE level per NFPA 59A 2006 are shown on Plates 74 

through 88, which includes plots showing the target spectrum, acceleration response spectra for 

the seed motion as well as the matched motion for 5% damping. Also shown are plots of the 

associated acceleration, velocity, and displacement time histories of the seed motions and 

matched motions. Similar set of results for SSE level per NFPA 59A 2006 are shown on Plates 89 

through 103 and Plates 104 through 118 for the onshore and nearshore locations, respectively. 

Spectrally matched motions per NFPA 59A 2013 are presented in Appendix D.  

The significant duration (D5-95) of the spectrally matched horizontal ground motions were compared 

to the deterministic estimates using empirical relationships (Abrahamson and Silva, 1996 and 

Bommer et al., 2009) on Plates 119 through 121 for OBE and SSE levels per NFPA 59A 2006 for 

the onshore and nearshore locations, respectively. The empirical relationship proposed by 

Bommer et al. (2009) uses the PEER earthquake dataset which includes the 2002 Denali, 1999 

Chi-Chi, and 1999 Turkey earthquakes.  Abrahamson and Silva (1996) based on a seismic 

catalogue for shallow crustal motions up Northridge 1994 event, proposed two functional forms for 

significant duration, with a magnitude-dependent and magnitude-independent stress drop.  The 

magnitude-dependent stress drop is used herein. Deterministic duration estimates were computed 

for the following three controlling scenarios (a) Mw = 9.2 at distance of 43.8 mi (70 km), (b) Mw =8.0 
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at distance of 37.5 mi (60 km), and (c) Mw = 7.2 at distance of 6.2 mi (10 km). Overall, the range of 

significant duration of the matched motions is representative of the range corresponding to the 

earthquake scenarios controlling the ground motion hazard at the site. Furthermore, the average 

strong motion duration of the 10 spectrally matched ground motions (shown with the thick black 

dash line) compares well with the average of median estimates (shown with the solid yellow line). 

Appendix E presents results in graphical form of: (i) the acceleration, velocity and displacement 

time histories, (ii) the normalized cumulative energy, (iii) the target and the calculated response 

spectra, (iv) the fourier amplitude spectrum, (v) the power spectra density function of each 

matched component of the motions and also presents the cross-correlation coefficients of the 

components of each motion. These results indicate that all requirements per ASCE 4-98 are met 

for the spectral matching at both OBE and SSE level per NFPA 59A 2006. 
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Enlarged view of structure on west side of northern Cook Inlet

Position of Bruin Bay fault is modified from
Magoon and others (1976).

Traces of Lake Clark and Castle Mountain faults are
simplified from Magoon and others (1976).

Trace of Eagle River fault is simplified from
Magoon and others (1976).

Position of Border Ranges fault is highly uncertain between Seldovia and
Peters Creek-Eklutna area where it is concealed by Cenozoic units.
Trace shown here is modified after Wilson and others (2009).

Oil accumulation

Modified from Shellenbaum et al. (2010)

Fault - dashed where approximately located

Fold axis - dashed where approximately located

Depth contours - dashed outside of seismic control; queried where inferred or doubtful

Strike-slip fault

Red line on location map above denotes area of seismic reflection data used in this study

Index contour (depth in feet relative to sea level datum)

Intermediate contour
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Thrust fault - sawteeth on upper plate

Normal fault (seismic derived)

Anticline
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Vertical depth in feet
Datum: Sea Level

Legend

*Oil and gas accumulations are displayed for reference only.  They are typically
  located within the shallower Tertiary section, not at the mapped surface.
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Modified from Enos and Maier, 2013.
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Note: 
1. d < d', where d and d' are the distances between the Site and the 

projected fault tip and anticline axis, respectively.
2. A = Axial hinge separating the anticline forelimb from the synclinal flat.
3. This diagram is meant to illustrate how the site-to-source distance 

would change in map view if the anticline axis (left-hand dot) was 
used as a proxy for fault tip location. This diagram does not accurately 
portray the depth of the fault tips, which would be the same in both 
scenarios.

Modified from Suppe and Medwedeff (1990)
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for the purpose of geohazard analysis, including probabilistic seismic hazard analysis, 
to support the Alaska LNG project’s FERC filings.
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PLATE 16

DIAGRAMMATIC CROSS SECTION OF
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PROBABILISTIC SEISMIC HAZARD ANALYSES COMPONENTS

LNG FACILITIES 

ALASKA LNG PROJECT

NIKISKI, ALASKA

3. Characterize amplitude of ground 
motions for given eqk. scenario (GMPE)

P
L

A
T

E
 1

9

1. Define Seismic Sources 2. Characterize Magnitude Reccurence 

4. Perform PSHA

1 / N years

Uniform Hazard Spectrum -
N -yr Return Period

5. Deaggregation
Hazard Curves



Report No. 04.10140334-6

Confidential
LNG Facilities Probabilistic Seismic Hazard (PSHA) Report 

USAL-FG-GRHAZ-00-002015-001 Rev.0 
5-May-2016

GENERIC LOGIC TREE FOR TREATMENT OF EPISTEMIC UNCERTAINTIES
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NOTE: This logic tree illustrates the modeling of  epistemic uncertainty modeled in this project.  Values and weights for specific
seismic sources and sources of uncertainty are described in Section 3.
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DEVELOPMENT OF SHEAR WAVE VELOCITY PROFILES FOR THE ONSHORE LNG FACILITIES
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DEVELOPMENT OF SHEAR WAVE VELOCITY PROFILES FOR THE NEARSHORE LNG FACILITIES
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SUMMARY OF SHEAR WAVE VELOCITY DATA OBTAINED FROM DOWNHOLE SEISMIC SHEAR WAVE 

VELOCITY TESTS IN THE ONSHORE AND NEARSHORE PROJECT AREA DURING PHASES 1 AND 2
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EXAMPLE MAGNITUDE PROBABILITY DENSITY FUNCTIONS
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EXAMPLE ANNUAL RECURRENCE PREDICTED BY DIFFERENT MAGNITUDE PDF MODELS
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475-YEAR RETURN PERIOD HORIZONTAL ACCELERATION RESPONSE SPECTRA ESTIMATED FOR 

THE REPRESENTATIVE ONSHORE LOCATIONS (VS30 = 885 FT/S)
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2475-YEAR RETURN PERIOD HORIZONTAL ACCELERATION RESPONSE SPECTRA ESTIMATED FOR 

THE REPRESENTATIVE ONSHORE LOCATIONS  (VS30 = 885 FT/S)
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475-YEAR RETURN PERIOD HORIZONTAL ACCELERATION RESPONSE SPECTRA ESTIMATED FOR 

THE REPRESENTATIVE NEARSHORE LOCATIONS (VS30 = 885 FT/S)
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2475-YEAR RETURN PERIOD HORIZONTAL ACCELERATION RESPONSE SPECTRA ESTIMATED FOR 

THE REPRESENTATIVE NEARSHORE LOCATIONS  (VS30 = 885 FT/S)
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COMPARISON OF 475- AND 2475-YEAR RETURN PERIOD HORIZONTAL ACCELERATION RESPONSE 

SPECTRA ESTIMATED FOR THE REPRESENTATIVE ONSHORE AND NEARSHORE LOCATIONS (VS30 

= 885 FT/S)
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COMPARISON OF 475- AND 2475-YEAR RETURN PERIOD HORIZONTAL ACCELERATION RESPONSE 

SPECTRA ESTIMATED FOR THE REPRESENTATIVE ONSHORE LOCATION (VS30 = 885 FT/S) TO THE 

PHASE 1 PSHA RESULTS (VS30 = 900 FT/S) 
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MEAN ANNUAL HAZARD CURVES AT DIFFERENT STRUCTURAL PERIODS FOR THE ONSHORE 

LOCATION - NO DIRECTIVITY (VS30 = 885 FT/S)
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MEAN ANNUAL HAZARD CURVES AT DIFFERENT STRUCTURAL PERIODS FOR THE NEARSHORE 

LOCATION - NO DIRECTIVITY (VS30 = 885 FT/S)
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA FOR THE ONSHORE 

LOCATION FOR 475 AND 2475-YEAR RETURN PERIOD EVENTS - NO DIRECTIVITY (VS30 = 885 FT/S)
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA FOR THE NEARSHORE 

LOCATION FOR 475 AND 2475-YEAR RETURN PERIOD EVENTS - NO DIRECTIVITY (VS30 = 885 FT/S)
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA FOR THE ONSHORE 

LOCATION FOR 475 AND 2475-YEAR RETURN PERIOD EVENTS - NO DIRECTIVITY (ND), FAULT 

NORMAL (FN) AND FAULT PARALLEL (FP) DIRECTIVITY EFFECTS (VS30 = 885 FT/S)
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA FOR THE NEARSHORE 

LOCATION FOR 475 AND 2475-YEAR RETURN PERIOD EVENTS - NO DIRECTIVITY (ND), FAULT 

NORMAL (FN) AND FAULT PARALLEL (FP) DIRECTIVITY EFFECTS (VS30 = 885 FT/S)
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FN/ND AND FP/ND RATIOS FOR 475 AND 2475 YEARS
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ANNUAL HAZARD CURVES PER SEISMIC SOURCE AT PGA - ONSHORE LOCATION (VS30 = 885 FT/S)

LNG FACILITIES 
ALASKA LNG PROJECT

NIKISKI, ALASKA

PLATE 40



Confidential
LNG FacilitiesProbabilistic Seismic Hazard (PSHA) Report

USAL-FG-GRHAZ-00-002015-001 Rev.0 
Report No. 04.10140334-6 5-May-2016

ANNUAL HAZARD CURVES PER SEISMIC SOURCE AT 1 SEC - ONSHORE LOCATION (VS30 = 885 

FT/S)
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ANNUAL HAZARD CURVES PER SEISMIC SOURCE AT 3 SEC - ONSHORE LOCATION (VS30 = 885 

FT/S)
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ANNUAL HAZARD CURVES PER SEISMIC SOURCE AT PGA - NEARSHORE LOCATION (VS30 = 885 

FT/S)
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ANNUAL HAZARD CURVES PER SEISMIC SOURCE AT 1 SEC - NEARSHORE LOCATION (VS30 = 885 

FT/S)
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ANNUAL HAZARD CURVES PER SEISMIC SOURCE AT 3 SEC - NEARSHORE LOCATION (VS30 = 885 

FT/S)
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DEAGGREGATION OF THE HAZARD BY SEISMIC SOURCES FOR PGA, SA (T=1.0 SEC) AND SA (T=3.0 

SEC), FOR 475-YEAR RETURN PERIOD - ONSHORE LOCATION (VS30 = 885 FT/S)
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DEAGGREGATION OF THE HAZARD BY SEISMIC SOURCES FOR PGA, SA (T=1.0 SEC) AND SA (T=3.0 

SEC), FOR 2475-YEAR RETURN PERIOD - ONSHORE LOCATION (VS30 = 885 FT/S)

LNG FACILITIES 
ALASKA LNG PROJECT

NIKISKI, ALASKA

PLATE 47

8.7%
5.0%

0.0%

9.5%

0.0%
4.3%

49.9%

20.9%

30.0%

8.9%
0.1%

24.0%

0.0%
0.5%

24.5%

6.4%

32.2%

4.7% 3.8%

36.0%

0.0% 0.1%

14.2%

5.6%

0%

10%

20%

30%

40%

50%

60%

F
7

  M
id

d
le

 G
ro

u
nd

 S
ho

a
l

an
tic

lin
e

B
G

  
C

ru
st

a
l B

ac
kg

ro
u

nd
S

e
is

m
ic

ity

S
1

 In
te

rf
a

ce
 -

 K
od

ia
k 

Is
.

S
2

 In
te

rf
a

ce
 -

 P
ric

e 
W

ill
ia

m
S

o
un

d

S
3

  I
nt

er
fa

ce
 -

 Y
ak

u
ta

t

M
T

 M
e

ga
th

ru
st

IS
60

 S
la

b
, d

e
pt

h
 6

0 
km

IS
12

0 
S

la
b,

 d
ep

th
 1

2
0 

km

F
ra

c
ti

o
n

a
l 

C
o

n
tr

ib
u

ti
o

n

PGA

1 sec

3 sec



Confidential
LNG FacilitiesProbabilistic Seismic Hazard (PSHA) Report

USAL-FG-GRHAZ-00-002015-001 Rev.0 
Report No. 04.10140334-6 5-May-2016
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DEAGGREGATION OF THE HAZARD BY SEISMIC SOURCES FOR PGA, SA (T=1.0 SEC) AND SA (T=3.0 
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DEAGGREGATION OF THE HAZARD BY MAGNITUDE AND DISTANCE - ONSHORE LOCATION (VS30 = 

885 FT/S)
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UNIFORM HAZARD SPECTRA, COMPARISON OF THE ONSHORE LOCATION WITH USGS STUDIES 

(USGS UHS FOR VS30=760 M/S (2493 FT/S) AMPLIFIED USING ASCE AMPLIFICATION FACTORS)
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRUM AT GROUND SURFACE 

(VS30=885FT/S) FOR OBE PER NFPA-59A (2006) - FAULT NORMAL (FN) AND FAULT PARALLEL (FP)
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DEVELOPMENT OF THE 150% MEDIAN ONSHORE DETERMINISTIC RESPONSE SPECTRUM - NO 

DIRECTIVITY (VS30 = 885 FT/S)
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DEVELOPMENT OF THE 150% MEDIAN NEARSHORE DETERMINISTIC RESPONSE SPECTRUM - NO 

DIRECTIVITY (VS30 = 885 FT/S)
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DEVELOPMENT OF MAXIMUM CONSIDERED EARTHQUAKE (MCE) SPECTRUM AT GROUND 

SURFACE (VS30=885 FT/S) PER ASCE 7-05 - ONSHORE LOCATION, FAULT NORMAL
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DEVELOPMENT OF MAXIMUM CONSIDERED EARTHQUAKE (MCE) SPECTRUM AT GROUND 
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AND FAULT PARALLEL

LNG FACILITIES 
ALASKA LNG PROJECT

NIKISKI, ALASKA

PLATE 60

0

0.5

1

1.5

2

2.5

0.01 0.1 1 10

S
p

e
c
tr

a
l 
A

c
c
e
le

ra
ti

o
n

 (
g

)

Period (sec)

Nearshore - FN Directivity

Nearshore - Smoothed FP Directivity

Nearshore - Smoothed FN Directivity

ξ = 5%



Confidential
LNG FacilitiesProbabilistic Seismic Hazard (PSHA) Report

USAL-FG-GRHAZ-00-002015-001 Rev.0 
Report No. 04.10140334-6 5-May-2016

COMPARISON OF MAXIMUM CONSIDERED EARTHQUAKE (MCE) SPECTRA AT GROUND SURFACE 

(VS30 = 885 FT/S) PER ASCE 7-05 ESTIMATED FOR THE REPRESENTATIVE ONSHORE AND 

NEARSHORE LOCATIONS (VS30 = 885 FT/S)
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DEVELOPMENT OF DESIGN EARTHQUAKE (DE) SPECTRUM AT GROUND SURFACE (VS30=885 FT/S) 

PER ASCE 7-05 - ONSHORE LOCATION, FAULT NORMAL
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DEVELOPMENT OF DESIGN EARTHQUAKE (DE) SPECTRUM AT GROUND SURFACE (VS30=885 FT/S) 

PER ASCE 7-05 - ONSHORE LOCATION, FAULT PARALLEL
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DEVELOPMENT OF DESIGN EARTHQUAKE (DE) SPECTRUM AT GROUND SURFACE (VS30=885 FT/S) 

PER ASCE 7-05 - NEARSHORE LOCATION, FAULT NORMAL
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PER ASCE 7-05 - ONSHORE LOCATION, FAULT PARALLEL

LNG FACILITIES 
ALASKA LNG PROJECT

NIKISKI, ALASKA

PLATE 66

0.01

0.1

1

10

0.01 0.1 1 10

S
p

e
c
tr

a
l 
A

c
c
e
le

ra
ti

o
n

 (
g

)

Period (s)

Site-Specific MCE - Nearshore, FP

2/3*Site-Specific MCE - Nearshore, FP

80% ASCE 7-05 General Spectrum (Site Class D)

Design Spectrum (DE) - Nearshore, FP

5% damping



Confidential
LNG FacilitiesProbabilistic Seismic Hazard (PSHA) Report

USAL-FG-GRHAZ-00-002015-001 Rev.0 
Report No. 04.10140334-6 5-May-2016

5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA AT GROUND SURFACE 

(VS30=885 FT/S) PER NFPA-59A 2006 GUIDELINES - ONSHORE LOCATION
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA AT GROUND SURFACE 

(VS30=885 FT/S) PER ASCE 7-05 GUIDELINES - ONSHORE LOCATION
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA AT GROUND SURFACE 

(VS30=885 FT/S) PER NFPA-59A 2006 GUIDELINES - NEARSHORE LOCATION
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5-PERCENT DAMPED HORIZONTAL ACCELERATION RESPONSE SPECTRA AT GROUND SURFACE 

(VS30=885 FT/S) PER ASCE 7-05 GUIDELINES - NEARSHORE LOCATION
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Spectrum at the Surface per ASCE 7-05 - Nearshore, FP Directivity

Design Earthquake (DE) Horizontal Spectrum at the Surface per ASCE
7-05 - Nearshore, FN Directivity

Design Earthquake (DE) Horizontal Spectrum at the Surface per ASCE
7-05 - Nearshore, FP Directivity
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VERTICAL TO HORIZONTAL SPECTRAL ACCELERATION RATIOS (V/H) OF ALASKA RECORDS FOR 

SITE CLASS D AND R = 0 - 31 MI (0 - 50 KM)
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5-PERCENT DAMPED VERTICAL ACCELERATION RESPONSE SPECTRA AT GROUND SURFACE 

(VS30=885 FT/S) PER NFPA-59A 2006 GUIDELINES
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5-PERCENT DAMPED VERTICAL ACCELERATION RESPONSE SPECTRA AT GROUND SURFACE 

(VS30=885 FT/S) PER ASCE 7-05 GUIDELINES
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COMPARISON OF SIGNIFICANT DURATION D(5-95) OF SPECTRALLY MATCHED HORIZONTAL 

GROUND MOTIONS FOR OBE LEVEL PER NFPA 59A 2006 WITH THE DETERMINISTIC ESTIMATES 

USING EMPIRICAL RELATIONSHIPS 
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