Alaska LNG Fueling Alaska's Future

NOVEMBER 2015

RDC – Project Update

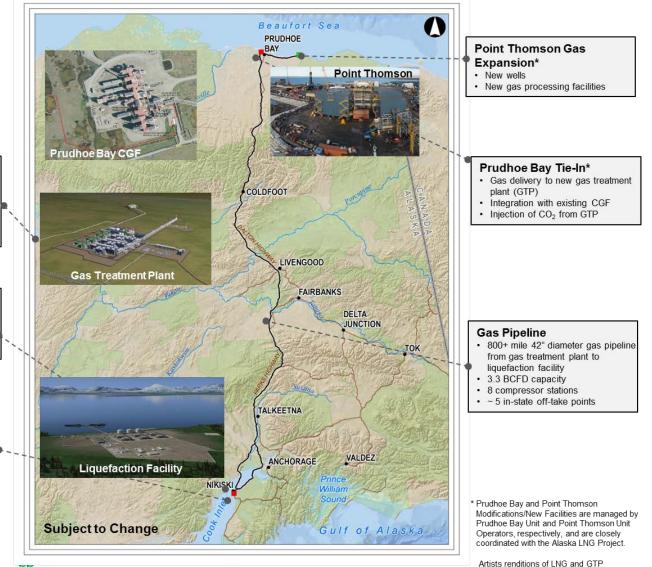
Alaska LNG – Project Overview

Alaska LNG

TransCanada

An integrated liquefied natural gas export project providing access to gas for Alaskans

Gas Treatment Plant (GTP)


- · 3.3 BCFD peak winter rate
- Three trains with compression, dehydration and chilling for gas conditioning (remove impurities)
- CO₂ removed and compressed for injection at PBU

LNG Storage & Marine Terminal

- · LNG storage tanks
- Two jetties to accommodate 15-20 LNG carriers per month

Liquefaction Facility

- Natural gas is cooled to -260 degrees to condense the volume 600 times
- 3 trains dehydrate, chill and liquefy gas to produce up to 20 million tons of LNG each year

ConocoPhillips ExonMobil

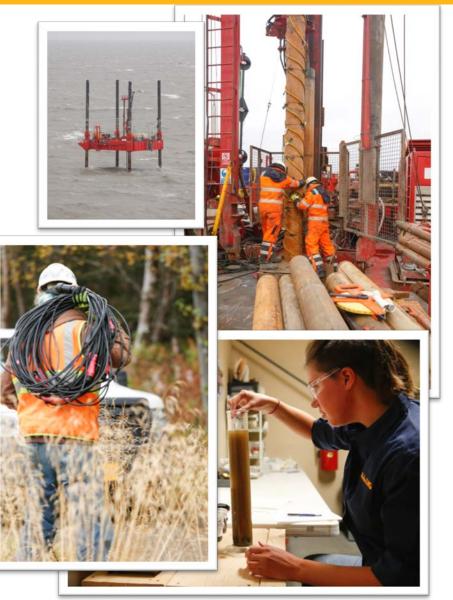
Status

Alaska LNG

2015 Accomplishments

- Filed "resource reports" with FERC, key to EIS, permits
- Received DoE export authorization for non-FTA countries
- Progressed project design ~\$350M spent on pre-FEED
- Completed field data acquisition, geotechnical work scopes
- AOGCC ruling supports gas offtake and CO₂ reinjection

Improve Alignment


- First time NS gas resource "owners" have worked on an integrated LNG project together as one group
- Engaging local stakeholders, Native Corporations / Groups
- Building contacts with Alaskan businesses (700 registered)

Reduce Risk

- Confirming project's technical / execution feasibility
- Experienced team working project "Hundreds of Years"

Reduce Cost

- * LNG projects must produce globally competitive product
- Construction and operating costs drive 'cost of supply'
- Now is the time to optimize costs

Project Development Phases

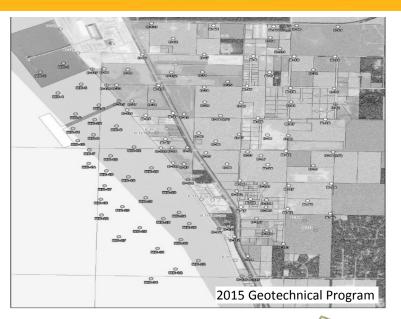
Alaska LNG

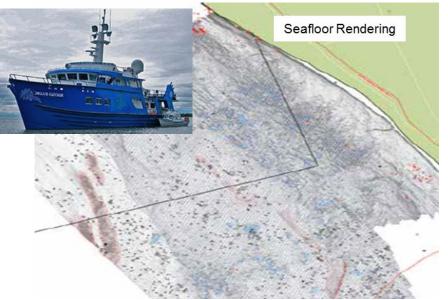
Alaska LNG – Phased/Gated Project Management Process (Oct 12)

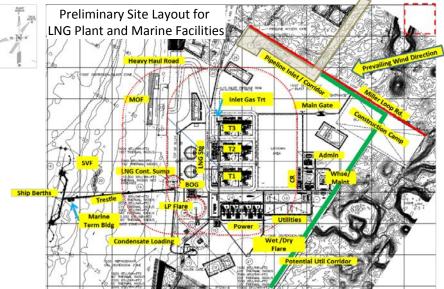
- 4 -

LNG Plant and Marine Terminal Update Alaska LNG

Actively acquiring land, purchased ~600 acres in Nikiski


Evaluating alternative layouts, driver selection complete

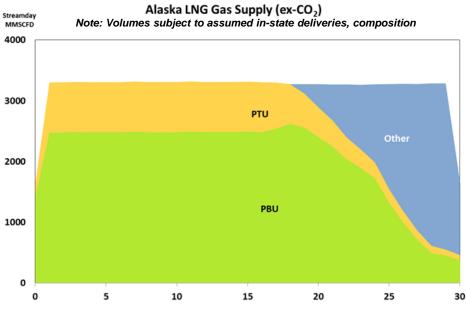

Continuing to improve marine facility design and operations


- Collecting sea floor and metocean data
- Incorporating findings from navigation simulation

Continuing geotechnical assessment onshore and offshore

Focusing on fabrication / modularization to reduce costs

Pipeline Update


Alaska LNG

Pipeline materials design and testing in progress

- Evaluating weld development / procedures
- Testing alternative coating designs / applications
- 42" pipeline material testing in progress
- 48" pipeline materials ordered for testing

Working with federal pipeline regulator (PHMSA) to confirm design basis and align on special permit conditions

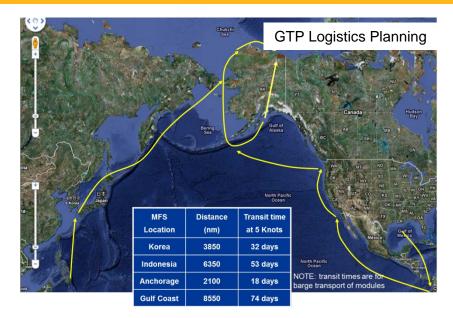
Continued data exchange / collaboration with AGDC on route, design, execution planning and in-state offtakes

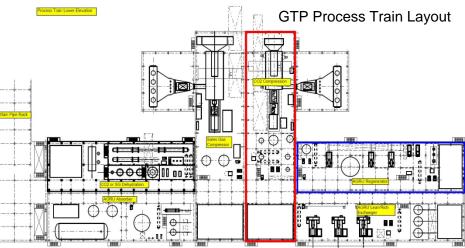
42" Pipeline Testing Program

	42" PIPELINE	48" PIPELINE
Design Peak Capacity from GTP	3.3 BCFD	3.3 BCFD
Peak to LNG (Annual Average)	2.8 BCFD (Net of fuel and (2.7 BCFD) ^{in-state} gas)	2.8 BCFD (Net of fuel and (2.7 BCFD) ^{in-state} gas)
Capex / Opex	Lowest capex	Higher capex, lower opex
Compression	Base: 8 stations - Operating redundancy	Base: 4 - 5 stations - Less fuel
Expansion	Single train expansion with 10 additional stations	Single train expansion with 5 additional stations
Construction	More construction risk than typical pipelines in U.S.	More construction risk than 42", 59% heavier than typical
Risk	 pipe 22% heavier than other NA gas pipelines 	- more equipment, gravel, truckloads
		- CI crossing complexity
N American	Available for non-strain based design sections	No relevant experience suitable for Alaska today
Content	(~ 80 - 90%)	

Gas Treatment Plant Update

Alaska LNG

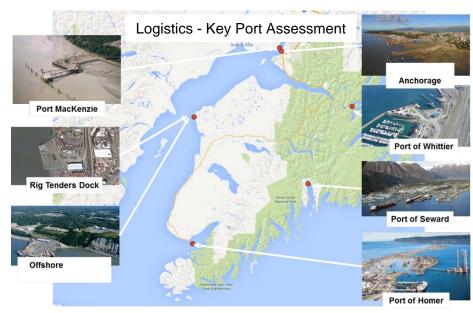

Completed geotechnical assessment, confirmed soils, access to gravel, water resources

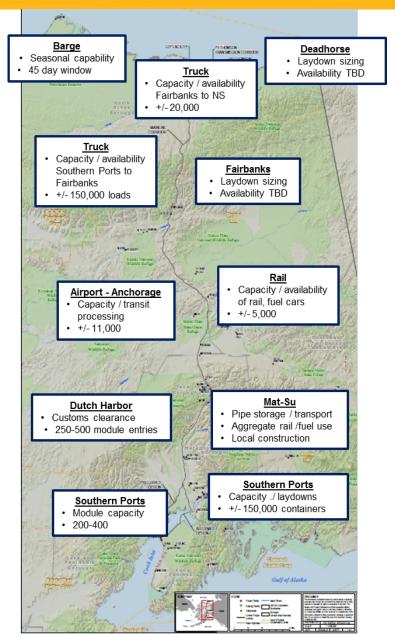

Using 3D modeling of Acid Gas Rejection Unit (AGRU), CO_2 compression piping and equipment layout for cost estimates and constructability.

Working integrated design issues with PBU

Working with FERC to define engineering information required to complete NEPA process

Integrated Logistics Update


Alaska LNG


Initial logistics and infrastructure analysis complete (roads, trucks, ports, marine vessels, airports, rails, fuel, etc.)

Preliminary findings include:

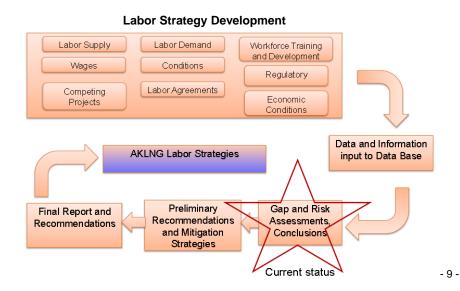
- Sufficient capacity in key ports with some modernization already planned
- Potential pinch points identified with Alaska based trucking, railroad pipe cars, air transport capacity for personnel, camp infrastructure and the Alaska Marine Highway – developing plans to resolve
- * Jones Act compliant vessels for pipe, break-bulk cargo are limited

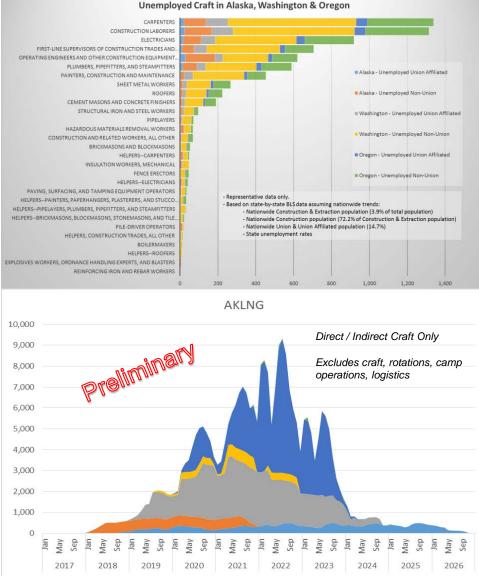
Modeling costs / schedule implications of existing infrastructure

Integrated Labor Update

Alaska LNG

Progressing labor analysis with key stakeholders:


- Labor unions and merit based associations,
- * Alaska Department of Labor, State representatives
- Alaska Native regional and village corporations
- Federal officials, national databases


Initial Focus on 9 Key Craft Types: Boilermakers, Carpenters, Electricians, Insulators, Iron Workers, Laborers, Operating Engineers, Pipefitters, Teamsters

Maximize use of qualified Alaska Hires

Work in progress (complete by YE15), early findings:

- Construction demand significantly greater than currently available Alaskan workforce
- Access to all sources of Alaskan labor required
- Risk from competing industrial demand to be mitigated

■ Infrastructure ■ LNG ■ LNG - Marine ■ Pipeline ■ Pipeline - Facilities

GTP

Alaska LNG by-the-numbers

Alaska LNG

Technical and field progress

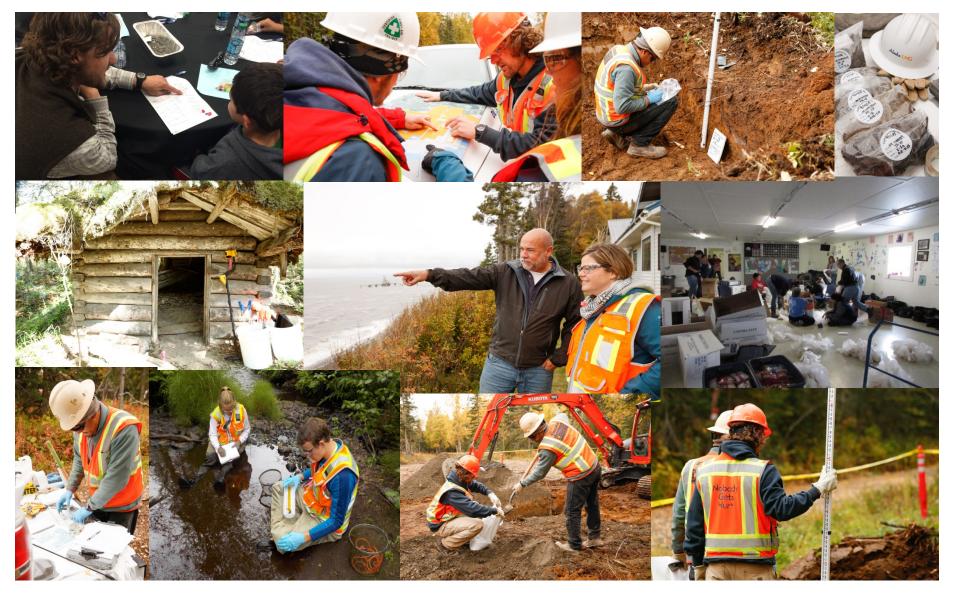
- \$350M spent on pre-FEED
- * ~600 acres purchased in Nikiski, Alaska
- * 135 full-time personnel on Alaska LNG Project
- * 200+ people in the field (80 scientists, 300k hrs)
- 40,500+ acres of cultural surveys
- * 148,000+ feet of shallow seismic completed
- 580+ stream / wetlands targets studied
- 250 boreholes drilled
- * 150+ environmental site assessments completed
- * 2,000+ helicopter flying hours, 87,000+ miles driven
- * 1,100+ field check points set/confirmed

Regulatory

- * 2 DoE conditional export licenses (FTA / non-FTA)
- 10,000+ pages of regulatory filings

Engagement

- 90+ community outreach events
- * 100s of Alaska entities involved in logistics and labor studies
- ~700 Alaska businesses information sessions
- 40+ meetings with Alaska Native regional and village corporations and tribal entities



Our Team at Work

Alaska LNG

